

Mark Scheme (Results)

October 2021

Pearson Edexcel GCE In Mathematics (9MA0) Paper 31 Statistics

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2021 Question Paper Log Number P68828A Publications Code 9MA0_31_2111_MS All the material in this publication is copyright © Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

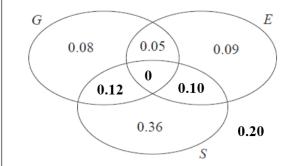
EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 100.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - **A** marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - **B** marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt[4]{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark


- 4. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- Where a candidate has made multiple responses <u>and indicates which response</u> <u>they wish to submit</u>, examiners should mark this response.
 If there are several attempts at a question <u>which have not been crossed out</u>, examiners should mark the final answer which is the answer that is the <u>most</u> <u>complete</u>.
- 6. Ignore wrong working or incorrect statements following a correct answer.
- 7. Mark schemes will firstly show the solution judged to be the most common response expected from candidates. Where appropriate, alternatives answers are provided in the notes. If examiners are not sure if an answer is acceptable, they will check the mark scheme to see if an alternative answer is given for the method used.

Qu 1	Scheme		Marks	AO
(a)	Disadvantage: e.g. Not random; cannot use (reliably) for inferences		B1	1.1b
(b)	[Sight or correct use of] $X \sim B(36, 0.08)$		M1	3.3
(i)	P(X = 4) = 0.167387		A1	1.1b
(ii)	$[P(X \ge 7) = 1 - P(X \le 6) =] 0.022233 \text{ awrt } 0.0222$		A1	1.1b
			(3)	
(c)	P(In dance club and dance tango) = $0.4 \times 0.08 = \underline{0.032} \text{ or } \frac{4}{\underline{125}} \text{ or } \underline{3.2\%}$			1.1b
			(1)	
(d)	[Let T = those who can dance the Tango. Sight or use of] $T \sim B(50, "0.032")$			3.3
	$[P(T < 3) = P(T \le 2) =] 0.7850815$	awrt <u>0.785</u>	A1	1.1b
			(2)	
			(7 m	arks)
(-)		otes		
(a)	B1 for a suitable disadvantage:			
	Allow (B1)	Do NOT allow	v (B0)	
	Not random <u>or</u> less random (o.e.)	Not representative Less accurate		
	Cannot use (reliably) for inferences (More likely to be) biased	Any comment based on tim	e or cost	
	(Wore fixely to be) blased	Any mention of skew		
		Any mention of non-respor	nse	
		<u> </u>		
(b)	M1 for sight of B(36, 0.08) Allow in words: <u>binomial</u> with $n = 36$ and $p = 0.08$ may be implied by one correct answer to 2sf <u>or</u> sight of P($X \le 6$) = 0.97776 i.e. awrt 0.98			wrt 0.98
	Allow for $36C4 \times 0.08^4 \times 0.92^{32}$ as this is "co	rrect use"		
(i)	1 st A1 for awrt 0.167 NB An answer of just awrt 0.167 scores $M1(\Rightarrow)1^{st} A1$			
(ii)	2 nd A1 for awrt 0.0222			
(c)	B1 for 0.032 o.e. (Can allow for sight of 0.4×0	0.08)		
(d)	M1 for sight of B(50, "0.032") ft their answer	to (c) provided it is a probab	oility $\neq 0.0$	8
	may be implied by correct answer or sight of $[P(T \le 3)] = 0.924348$ i.e. awrt 0.924 or $P(T \le 2)$ as part of $1 - P(T \le 2)$ calc.			2) calc
	A1 for awrt 0.785	$(1 \ge 2)$ us put of	· · (1 <	<i>2)</i> cale.
MR	Allow MR of 50 (e.g. 30) provided clearly attempting $P(T \le 2)$ and score M1A0			

Qu 2	Scheme	Mar	rks	AO
(a)	Negative	B 1		1.2
			(1)	
(b)	Marc's suggestion is compatible because it's negative correlation	B1		2.4
			(1)	
(c)	(r =) -0.54458266 awrt <u>-0.545</u>	B 1		1.1b
(b)		D1	(1)	2.5
(d)	$H_0: \rho = 0 \qquad H_1: \rho < 0$	B1		2.5
	$[5\% 1-\text{tail } \text{cv} =] (\underline{+}) \ 0.4259$ (significant result / reject H ₀)	M1		1.1a
	There is evidence of negative correlation between the number of letters in	A1		2.2b
	(or <u>length</u> of) a student's last <u>name</u> and their first <u>name</u>			
			(3)	
		(6 n	nark	s)
	Notes			,
(a)	 B1 for "negative" Allow "slight" or "weak" etc Allow a description e.g. "as x increases y decreases" or in context e.g. "people with longer last names tend to have shorter first names" A comment of "negative skew" is B0 Need to see distinct or separate responses for (a) and (b) 			
(b)	 B1 for a comment that suggests data is compatible with the suggestion and a suitable reason such as "there is negative correlation" or a description in x and y or in context or the points lie close to a line with <u>negative gradient</u> or draw line y = x and state that more points below the line so supports (or is compatible with) his suggestion A reason based on just a single point is B0 e.g. "11 letters in last name has only 5 in first name" 			
(c)	B1 for awrt – 0.545			
(d)	B1 for both hypotheses correct in terms of ρ M1 for a critical value compatible with their H ₁ :			
	In the a critical value compatible with then H1. 1-tail: awrt ± 0.426 (condone ± 0.425) or 2-tail (B0 scored for H1): awrt ± 0.497 If hypotheses are in words and can deduce whether one or two-tail then use their words. If no hypotheses or their H1 is not clearly one or two tail assume one-tail A1 for compatible signs between cv and <i>r</i> and a correct conclusion in context mentioning <u>correlation</u> and <u>number of letters</u> or <u>length</u> and <u>name</u> (ft their value from (c)) Do NOT award this A mark if contradictory comments or working seen e.g. "accept H0" or comparison of 0.426 with significance level of 0.05 etc			
NB	The M1A1 can be scored independently of the hypotheses			

Qu 3	Scheme	Mar	ks	AO
(a)	Hectopascal or hPa	B1		1.2
(b)	214		(1)	
(b)	$\overline{x} = \overline{y} + 1010$ or $\frac{214}{30} + 1010$	M 1		1.1b
	= 1017.1333 awrt 1017	A1		1.1b
(c)	$\sigma_x = \sigma_y$ (or statement that standard deviation is not affected by this type of coding)	M1	(2)	3.1b
	$\left[\sigma_{y}=\right]\sqrt{\frac{5912}{30}-\left("7.13[33]"\right)^{2}}$ or $\sqrt{146.1822}$	M1		1.1b
	= 12.0905 awrt <u>12.1</u>	A1	(3)	1.1b
(d)	High pressure (since approx. mean + sd) so clockwise Locations are (from North to South): Leuchars, Heathrow, Hurn	B1	(5)	2.4
	Wind direction is direction wind blows <u>from</u> So: Heathrow (NE) Hurn (E) Leuchars (W)	B1	(2)	2.2a
		(8 m	` /	s)
	Notes			
FYI	$1 \text{ hPa} = 100 \text{ Pa}; 10\text{hPa} = 1 \text{ kPa}; 1\text{Pa} = 1 \text{ Nm}^{-2}$			
(a)	B1 for "hectopascal" <u>or</u> hPa (condone pascals, allow millibars <u>or</u> mb) o.e. Do NOT allow kPa <u>or</u> kilopascals <u>or</u> Pa on its own			
(b)	M1 for a strategy to find \overline{x} Allow an attempt to find $\sum x$ that gets as far as $\sum x = \sum y - 30 \times 1010 [= 30514]$ A1 for awrt 1017 (accept 1020) [Ignore incorrect units]			514]
(c)	1 st M1 for an overall strategy using the fact $\sigma = \sigma$ (can be implied by	correc	t fina	al ans)
	1 st M1 for an overall strategy using the fact $\sigma_x = \sigma_y$ (can be implied by correct <u>final</u> ans) <u>or</u> for $\sum x = 30514$ and $\sum x^2 = 31041192$ (both seen and correct)			
	\underline{Or} for $\underline{\sum} x = 50.514$ and $\underline{\sum} x = 51.041192$ (both seen and correct) 2 nd M1 for a correct expression (with $$)(ft their \overline{y} to 3sf) allow awrt 146 for 146.1822			
	<u>or</u> for correct expression in x can ft their $\sum x > 30000$ or their answer to (b)			
	A1 (dep on 2 nd M1) for awrt 12.1 [Ignore incorrect units]		Ì	, ,
Final answer	Final ans of awrt 12.1 scores $3/3$ but if they then adjust for <i>x</i> e.g. add 1010 (M0M1A1)			M1A1)
(d)	1 st B1 for at least one of these reasons (these 2 lines) clearly stated (may see diagram) Need "high pressure" and "clockwise" to score on 1 st line Contradictory statements B0 e.g. correct N~S list but say "anticlockwise"			
	2 nd B1 (indep of 1 st B1) for deducing the 3 correct directions either in the table or stated as above If the answers in table and text are different we take the table (as question says)			

Qu 4	Scheme	Marks	AO	
(a)	0.08 + 0.09 + 0.36 = 0.53	B1	1.1b	
		(1)		
(b)(i)	$\left[P(G \cap E \cap S) = 0 \Rightarrow \right] \underline{p = 0}$	B1	1.1b	
(ii)	$[P(G) = 0.25 \implies] 0.08 + 0.05 + q + "p" = 0.25$	M1	1.1b	
	q = 0.12	A1	1.1b	
(\cdot)		(3)		
(c)(i)	$\left P(S E) = \frac{5}{12} \implies \left \frac{r + p''}{r + p'' + 0.09 + 0.05} = \frac{5}{12} \right \right $	M1 A1ft	3.1a	
			1.1b	
$(\bullet \bullet)$	$\begin{bmatrix} 12r = 5r + 5 \times 0.14 \implies \end{bmatrix} \underline{r = 0.10}$	A1	1.1b	
(ii)	$\left[0.08 + 0.05 + "0.12" + "0" + 0.09 + "0.10" + 0.36 + t = 1 \implies\right] \underline{t = 0.20}$	B1ft	1.1b	
		(4)		
(d)	$P(S \cap E') = 0.36 + "q" [= 0.48]$	B1ft	1.1b	
	$P([(S \cap E')] \cap G) = "q" [=0.12]$ and $P(G) = 0.25$ and	M1	2.1	
	$P(S \cap E') \times P(G) = "0.48" \times \frac{1}{4}$ or 0.12	M1	2.1	
	$P(S \cap E') \times P(G) = 0.12 = P([(S \cap E')] \cap G)$ so are independent	A1	2.2a	
		(3)	2.24	
	(11 marks)			
	Notes			
(a)	B1 for 0.53 (or exact equivalent) [Allow 53%]			
(b)(i)	B1 for $p = 0$ (may be placed in Venn diagram)			
(ii)	M1 for a linear equation for q (ft letter "p" or their value if $0 \le p \le 0.12$) \Rightarrow by $p + q = 0.12$			
	M1 for a linear equation for q (ft letter "p" or their value if $0 \le p \le 0.12$) =	\Rightarrow by $p + q =$	= 0.12	
	M1 for a linear equation for q (ft letter "p" or their value if $0 \le p \le 0.12$) = A1 for q = 0.12 (may be placed in Venn diagram)	\Rightarrow by $p + q =$	= 0.12	
(c)(i)	A1 for $q = 0.12$ (may be placed in Venn diagram)			
(c)(i)		and num	<u>or</u> den	
(c)(i)	 A1 for q = 0.12 (may be placed in Venn diagram) M1 for a ratio of probabilities (r on num and den) (on LHS) with num < den 	and num ' is not req	<u>or</u> den uired.	
	A1 for $q = 0.12$ (may be placed in Venn diagram) M1 for a ratio of probabilities (<i>r</i> on num and den) (on LHS) with num < den correct ft. Allow ft of letter " <i>p</i> " <u>or</u> their <i>p</i> where $0 \le p < 0.86$ but "+ 0" 1 st A1ft for a correct ratio of probabilities (on LHS) allowing ft of their <i>p</i> when 2 nd A1 for $r = 0.1(0)$ or exact equivalent (may be in Venn diagram) Ans only	and num is not req the $0 \le p < y 3/3$	<u>or</u> den uired. 0.86	
(c)(i) (ii)	 A1 for q = 0.12 (may be placed in Venn diagram) M1 for a ratio of probabilities (r on num and den) (on LHS) with num < den correct ft. Allow ft of letter "p" or their p where 0 ≤ p < 0.86 but "+ 0" 1st A1ft for a correct ratio of probabilities (on LHS) allowing ft of their p where 	and num is not req the $0 \le p < y 3/3$	<u>or</u> den uired. 0.86	
	A1 for $q = 0.12$ (may be placed in Venn diagram) M1 for a ratio of probabilities (<i>r</i> on num and den) (on LHS) with num < den correct ft. Allow ft of letter " <i>p</i> " <u>or</u> their <i>p</i> where $0 \le p < 0.86$ but "+ 0" 1 st A1ft for a correct ratio of probabilities (on LHS) allowing ft of their <i>p</i> when 2 nd A1 for $r = 0.1(0)$ or exact equivalent (may be in Venn diagram) Ans only	and num is not req re $0 \le p <$ y 3/3 nd <i>t</i> are all	<u>or</u> den uired. 0.86	
(ii)	A1 for $q = 0.12$ (may be placed in Venn diagram) M1 for a ratio of probabilities (<i>r</i> on num and den) (on LHS) with num < den correct ft. Allow ft of letter " <i>p</i> " <u>or</u> their <i>p</i> where $0 \le p < 0.86$ but "+ 0" 1 st A1ft for a correct ratio of probabilities (on LHS) allowing ft of their <i>p</i> when 2 nd A1 for $r = 0.1(0)$ or exact equivalent (may be in Venn diagram) Ans only B1ft for $t = 0.2(0)$ (o.e.) <u>or</u> correct ft i.e. $0.42 - (p + q + r)$ where <i>p</i> , <i>q</i> , <i>r</i> and	and num is not req re $0 \le p <$ y $3/3$ nd <i>t</i> are all ≤ 0.12)	<u>or</u> den uired. 0.86 probs	
(ii) (d)	A1 for $q = 0.12$ (may be placed in Venn diagram) M1 for a ratio of probabilities (<i>r</i> on num and den) (on LHS) with num < den correct ft. Allow ft of letter " <i>p</i> " <u>or</u> their <i>p</i> where $0 \le p < 0.86$ but "+ 0" 1 st A1ft for a correct ratio of probabilities (on LHS) allowing ft of their <i>p</i> when 2 nd A1 for $r = 0.1(0)$ or exact equivalent (may be in Venn diagram) Ans only B1ft for $t = 0.2(0)$ (o.e.) <u>or</u> correct ft i.e. $0.42 - (p + q + r)$ where <i>p</i> , <i>q</i> , <i>r</i> ar B1ft for $P(S \cap E') = 0.48$ (with label) (ft letter " <i>q</i> " or their value if $0 \le q \le$ M1 for attempting all required probs (labelled) <u>and</u> using them in a correct tes A1 for all probs correct and a correct deduction (no ft deduction here)	and num is not req re $0 \le p <$ y 3/3 nd <i>t</i> are all ≤ 0.12) st (allow ft	or den uired. 0.86 probs of q)	
(ii)	A1 for $q = 0.12$ (may be placed in Venn diagram) M1 for a ratio of probabilities (<i>r</i> on num and den) (on LHS) with num < den correct ft. Allow ft of letter " <i>p</i> " <u>or</u> their <i>p</i> where $0 \le p < 0.86$ but "+ 0" 1 st A1ft for a correct ratio of probabilities (on LHS) allowing ft of their <i>p</i> when 2 nd A1 for $r = 0.1(0)$ or exact equivalent (may be in Venn diagram) Ans only B1ft for $t = 0.2(0)$ (o.e.) <u>or</u> correct ft i.e. $0.42 - (p + q + r)$ where <i>p</i> , <i>q</i> , <i>r</i> ar B1ft for P($S \cap E'$) = 0.48 (with label) (ft letter " <i>q</i> " or their value if $0 \le q \le$ M1 for attempting all required probs (labelled) <u>and</u> using them in a correct test	and num is not req re $0 \le p <$ y 3/3 nd <i>t</i> are all ≤ 0.12) st (allow ft ward (B0M	<u>or</u> den uired. 0.86 probs of <i>q</i>) (11A1)	

Qu 5	Scheme	Marks	AO	
(a)	$\begin{bmatrix} \text{Let} & F \sim N(166.5, 6.1^2) \end{bmatrix} P(F < k) = 0.01 \implies \frac{k - 166.5}{6.1} = -2.3263$	M1	3.4	
	k = 152.309 <u>152</u> or awrt <u>152.3</u>	A1	1.1b	
(b)	[P(150 < F < 175) =] 0.914840 awrt 0.915	(2) B1 (1)	1.1b	
(c)	P(<i>F</i> > 160 150 < <i>F</i> < 175)	(1) M1	3.1b	
	$= \frac{P(160 < F < 175)}{P(150 < F < 175)} \underline{\text{or}} \frac{P(160 < F < 175)}{"(b)"}$	M1	1.1b	
	$=\frac{0.7749487}{"0.91484"}$	A1ft	1.1b	
	= 0.84708 awrt <u>0.847</u>	A1 (4)	1.1b	
(d)	$H_0: \mu = 166.5$ $H_1: \mu < 166.5$	B1	2.5	
	[Let X = height of female from 2 nd country] $\overline{X} \sim N\left(166.5, \left(\frac{7.4}{\sqrt{50}}\right)^2\right)$	M1	3.3	
	$P(\overline{X} < 164.6) = 0.03472$	A1	3.4	
	[0.0347 < 0.05 so significant <u>or</u> reject H ₀] There is evidence to support Mia's belief	dA1	2.2b	
		(4)		
	Notes	(11 mar	KS)	
(a)				
	Allow percentages instead of probabilities throughout.			
(b)	B1 for awrt 0.915			
(c)	1^{st} M1 for interpreting demand as an appropriate conditional probability (\Rightarrow	•		
	2 nd M1 for correct ratio of expressions (can ft their (b) on denominator) (\Rightarrow by 1 st A1ft) 1 st A1ft for a correct ratio of probs (can ft their "0.9148" to 3sf from (b) if > 0.775) 2 nd A1 for awrt 0.847			
(d)	B1 for both correct hypotheses in terms of μ			
	1 st M1 for selecting the correct model (needn't use $\overline{X} \Rightarrow$ by standardisation of			
	1 st A1 for correct use of the correct model i.e. awrt 0.035 (allow 0.04 if $P("\overline{X}" < 164.6)$ seen) Condone $P("\overline{X}" > 164.6) = 0.9652$ or awrt 0.97 <u>only if</u> comparison with 0.95 is made			
ALT	Use of z value: Need to see $Z = -1.8(15)$ and cv of ± 1.6449 (allow 1.64 or better) for 1 st A1			
ALT	Use of CR or CV for \overline{X} : Need to see " \overline{X} "< 164.7786 or CV = (awrt 16 Condone truncation i.e 164.7 or better	4.8) for 1 st	AI	
	2 nd dA1 (dep on M1A1 only) for a correct inference in context.			
	Must mention <u>Mia's belief</u> or <u>mean height of females/women</u> Do NOT award if contradictory statements about hypotheses made e.g. "not sig"			
SC	M0 for $\overline{X} \sim N(164.6,)$ If they achieve $p = awrt 0.035$ (o.e. with z-value or CV of 166.3) and a correct conclusion in context is given score M0A0A1 [and SC for awrt 0.97 > 0.95 case]			

Qu 6	Scheme	Marks	AO
(a)	[Sum of probs = 1 implies] $\log_{36} a + \log_{36} b + \log_{36} c = 1$	M1	3.1a
	$\Rightarrow \log_{36}(abc) = 1$ so $abc = 36$	A1	3.4
	All probabilities greater than 0 implies each of a, b and $c > 1$	B1	2.2a
	$36 = 2^2 \times 3^2$ (or 3 numbers that multiply to give 36 e.g. 2, 2, 9 etc.)	dM1	2.1
	Since a, b and c are distinct must be $2, 3, 6$ $(a = 2, b = 3, c = 6)$	A1	3.2a
(b)	$(1, 1)^2 (1, 1)^2 (1, 1)^2$	(5)	
(U)	$(\log_{36} a)^2 + (\log_{36} b)^2 + (\log_{36} c)^2$	M1	3.4
	[= 0.0374137+ 0.09398737+0.25]		
	= 0.38140 awrt <u>0.381</u>	A1 (2)	1.1b
		(2)	
	(7 marks)		s)
	Notes		
(a)	1^{st} M1 for a start to the problem using sum of probabilities leading to eq'n in <i>a</i> , <i>b</i> and <i>c</i>		
	1^{st}A1 for reducing to the equation $abc = 36$ [Must follow from their equation.]		
NB	Can go straight from $abc = 36$ to the answer for full marks for part (a).		
	B1 for deducing that each value > 1 (may be implied by 3 integers all > 1 in the next line)		
	2 nd dM1 (dep on M1A1) for writing 36 as a product of prime factors or		
	3 values with product = 36 and none = 1		
SC	2^{nd} A1 for 2, 3 and 6 as a list or $a = 2, b = 3$ and $c = 6$ MOMO If no method marks second but a correct answer given score: MOAOE		2/5)
Ans only	M0M0 If no method marks scored but a correct answer given score: M0A0B1M0A1 (2/5) This gets the SC score of 2/5 [Question says show your working clearly]		
	This gets the SC score of 2/3 [Question says show your working clearly]		
(b)	M1 for a correct expression in terms of <i>a</i> , <i>b</i> and <i>c</i> or values; ft their intege	rs <i>a</i> , <i>b</i> and	C
	Condone invisible brackets if the answer implies they are used.		
	A1 for awrt 0.381		