Summer Assignment Test 3 Version 0

1) Find the following integrals
(a) $\int \sec 3 x \tan 3 x d x$
(b) $\int \operatorname{cosec} x \cot x d x$
(c) $\int \sec ^{2} 2 x d x$
2. A box is being pushed and pulled across a rough surface by constant forces as shown in the diagram. The box is moving at a constant speed. By modelling the box as a particle, find the magnitude of the resistance due to friction.

3. A particle P is projected from a point on a horizontal plane with speed U at angle of elevation θ.
a) Find the range of the projectile
b) Hence find, as θ varies, the maximum range of the projectile.
c) Given that the range of the projectile is $\frac{2 U^{2}}{3 g}$, find the two possible values of θ

Summer Assignment Test 3 Version P

1) Find the following integrals
(a) $\int \sec 5 x \tan 5 x d x$
(b) $\int \operatorname{cosec} 2 x \cot 2 x d x$
(c) $\int \sec ^{2} 12 x d x$
2. A box is being pushed and pulled across a rough surface by constant forces as shown in the diagram. The box is moving at a constant speed. By modelling the box as a particle, find the magnitude of the resistance due to friction.

3. A particle P is projected from a point on a horizontal plane with speed 2 U at angle of elevation θ.
a) Find the range of the projectile
b) Hence find, as θ varies, the maximum range of the projectile.
c) Given that the range of the projectile is $\frac{4 U^{2}}{3 g}$, find the two possible values of θ

Summer Assignment Test 3 Version Q

1) Find the following integrals
(a) $\int \sec 7 x \tan 7 x d x$
(b) $\int \operatorname{cosec} 6 x \cot 6 x d x$
(c) $\int \sec ^{2} 22 x d x$
2. A box is being pushed and pulled across a rough surface by constant forces as shown in the diagram. The box is moving at a constant speed. By modelling the box as a particle, find the magnitude of the resistance due to friction.

3. A particle P is projected from a point on a horizontal plane with speed 3 U at angle of elevation θ.
a) Find the range of the projectile
b) Hence find, as θ varies, the maximum range of the projectile.
c) Given that the range of the projectile is $\frac{3 U^{2}}{g}$, find the two possible values of θ

Summer Assignment Test 3 Version R

1) Find the following integrals
(a) $\int \sec a x \tan a x d x$
(b) $\int \operatorname{cosec} p x \cot p x d x$
(c) $\int \sec ^{2} x d x$
2. A box is being pushed and pulled across a rough surface by constant forces as shown in the diagram. The box is moving at a constant speed. By modelling the box as a particle, find the magnitude of the resistance due to friction.

3. A particle P is projected from a point on a horizontal plane with speed 4 U at angle of elevation θ.
a) Find the range of the projectile
b) Hence find, as θ varies, the maximum range of the projectile.
c) Given that the range of the projectile is $\frac{8 U^{2}}{3 g}$, find the two possible values of θ
1a) $\frac{1}{3} \sec 3 x+c$
(b) $-\operatorname{cosec} x+c$
c) $\frac{1}{2} \tan 2 x+c$
2) $25(3 \sqrt{2}+2 \sqrt{3})=192.7$
3) a) $\frac{U^{2} \sin 2 \theta}{g}$
b) $\frac{U^{2}}{g}$
c) $20.9^{\circ}, 69.1^{\circ}$

Answers Version P

1a) $\frac{1}{5} \sec 5 x+c$
b) $-\frac{1}{2} \operatorname{cosec} 2 x+c$ c) $\frac{1}{12} \tan 12 x+c$
2) $30(2 \sqrt{2}+3 \sqrt{3})=240.7$
3) a) $\frac{4 U^{2} \sin 2 \theta}{g}$
b) $\frac{4 U^{2}}{g}$
c) $9.74^{\circ}, 80.3^{\circ}$

Answers Version Q
1a) $\frac{1}{7} \sec 7 x+c$
b) $-\frac{1}{6} \operatorname{cosec} 6 x+c$ c) $\frac{1}{22} \tan 22 x+c$
2) $100(\sqrt{2}+\sqrt{3})=314.6$
3) a) $\frac{9 U^{2} \sin 2 \theta}{g}$
b) $\frac{9 U^{2}}{g}$
c) $9.74^{\circ}, 80.3^{\circ}$

Answers Version R

$\begin{array}{ll}\text { 1a) } \frac{1}{a} \sec a x+c & \text { b) }-\frac{1}{p} \operatorname{cosec} p x+c \quad \text { c) } \tan x+c\end{array}$
2) $5(11 \sqrt{2}+8 \sqrt{3})=147.1$
3) a) $\frac{16 U^{2} \sin 2 \theta}{g}$
b) $\frac{16 U^{2}}{g}$
c) $15^{\circ}, 75^{\circ}$

