9MA0/ 03 Mock Paper: Part B Mechanics Mark scheme

Question	Scheme	Marks	AOs
1	$\mathbf{r}=(-4.5 \mathbf{i}+3 \mathbf{j})$	B1	1.1b
	Use of $\mathbf{r}=\mathbf{u} t+\frac{1}{2} \mathbf{a} t^{2}$	M1	3.1b
	$(-4.5 \mathbf{i}+3 \mathbf{j})=3 \mathbf{u}+0.5(\mathbf{i}-2 \mathbf{j}) 3^{2}$	A1ft	1.1b
	$\mathbf{u}=(-3 \mathbf{i}+4 \mathbf{j})$	A1	1.1b
		(4)	
(4 marks)			
Notes:			
B1: Correct displacement vector M1: Use of correct strategy and/or formula to give equation in \mathbf{u} only (could be obtained by two integrations) A1ft: Correct equation in \mathbf{u} only, following their displacement vector A1: Correct answer			

Question	Scheme	Marks	AOs
2	Differentiate wrt t	M1	1.1a
	$\mathbf{a}=(2 t-3) \mathbf{i}-12 \mathbf{j}$	A1	1.1b
	$(2 t-3)^{2}+(-12)^{2}$	M1	1.1b
	$(2 t-3)^{2}+(-12)^{2}=(6.5 / 0.5)^{2}$ oe	M1	2.1
	$4 t^{2}-12 t-16=0$	A1	1.1b
	$(t-4)(t+1)=0$	M1	1.1b
	$t=4$	A1	1.1b
		(7)	
(7 marks)			
Notes:			
M1: At least one power going down A1: A correct expression M1: Sum of squares of components (with or without square root) of \mathbf{a} or \mathbf{F} M1: Equating magnitude to $6.5 / 0.5$ or 6.5 as appropriate and squaring both sides A1: Correct quadratic $=0$ in any form M1: Attempt to solve a 3 term quadratic A1: 4			

Question	Scheme	Marks	AOs
4(a)	Moments about A (or any other complete method)	M1	3.3
	$T \cos 30^{\circ} \times\left(1 \sin 30^{\circ}\right)=20 \mathrm{~g} \times 1.5$	A1	1.1.b
	$T \cos 30^{\circ} \times\left(1 \sin 30^{\circ}\right)=20 \mathrm{~g} \times 1.5$	A1	1.1.b
	$T=679$ or 680 (N)	A1	1.1.b
		(4)	
(b)	Resolve horizontally	M1	3.1b
	$X=T \cos 60^{\circ}$	A1	1.1b
	Resolve vertically	M1	3.1b
	$Y=T \cos 30^{\circ}-20 g$	A1	1.1b
	Use of $\tan \theta=\frac{Y}{X}$ and sub for T	M1	3.4
	49° (or better), below horizontal, away from wall	A1	2.2a
		(6)	
(c)	Tension would increase as you move from D to C	B1	3.5a
	Since each point of the rope has to support the length of rope below it	B1	2.4
		(2)	
(d)	Take moments about $G, 1.5 Y=0$	M1	3.3
	$Y=0$ hence force acts horizontally.*	A1*	2.2a
		(2)	
(14 marks)			
Notes:			
(a) M1: Correct overall strategy e.g. $\mathrm{M}(A)$, with usual rules, to give equation in T only A1: (A1A0 one error) Condone 1 error A1: (A0A0 two or more errors) A1: Either 679 or 680 (since $g=9.8$ used)			
(b) M1: Using an appropriate strategy to set up first of two equations, with usual rules applying e.g. Resolve horiz. or $\mathrm{M}(C)$ A1: Correct equation in X only M1: Using an appropriate strategy to set up second of two equations, with usual rules applying e.g. Resolve vert. or $\mathrm{M}(D)$ A1: Correct equation in Y only M1: Using the model and their X and Y			

A1: 49 or better (since g cancels) Need all three bits of answer to score this mark or any other appropriate angle e.g 41° to wall, downwards and away from wall
(c)

B1: Appropriate equivalent comment
B1: Appropriate equivalent reason
(d)

M1: Using the model and any other complete method e.g. the three force condition for equilibrium
A1*: Correct conclusion GIVEN ANSWER

Question	Scheme	Marks	AOs
5(a)	Using the model and horizontal motion: $s=u t$	M1	3.3
	$12=T \times 45 \cos 10^{\circ}$	A1	1.1b
	$T=0.2707$.	A1	1.1b
	Using the model and vertical motion: $\boldsymbol{s}=\boldsymbol{u t}+\frac{\mathbf{1}}{2} a \boldsymbol{t}^{2}$	M1	3.4
	$s=45 T \sin 10^{\circ}+4.9 T^{2}$	A1	1.1b
	Correct strategy: sub for T and find s	M1	3.1b
	$d=3.5-2.4752-1$	M1	3.1b
	$=2.5(\mathrm{~cm}) \quad(2 \mathrm{SF})$	A1	2.2a
		(8)	
(b)	Using the model and vertical motion: $v=u+a t$	M1	3.3
	$v=45 \sin 10^{\circ}+9.8 T$	A1	1.1b
	Speed $=\left(\left(45 \cos 10^{\circ}\right)^{2}+v^{2}\right)^{0.5}$	M1	3.1b
	$46\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \quad$ (2 SF)	A1	1.1b
		(4)	
(c)	Model does not take account of air resistance.	B1	3.5b
	Model does not take account of the size of the tennis ball	B1	3.5b
		(2)	
(14 marks)			
Notes:			
(a) M1: Using the model and correct strategy A1: Correct equation in T only A1: 0.271 or better M1: Using the model and correct strategy A1: Correct equation M1: Sub for T and solve for s M1: Correct method to find d using their s A1: 2.5 is the only correct answer			
(b) M1: Using the model and correct strategy A1: Correct equation M1: Must have found a v and usual rules apply. Square root is needed. A1: $46(2 \mathrm{SF})$ is only correct answer			

(c)

B1: Other appropriate answer e.g. spin of the ball, wind effect
B1: Other appropriate answer e.g. spin of the ball, wind effect

