uestion	Scheme	Marks	AO
1(a)	Width = $0.4 \times 5 = 2$ (cm)	B1	3.1
	Area = 12 cm ² Frequency = 15 so 1 cm ² = $\frac{5}{4}$ packet o.e	M1	1.1
	Frequency of 9 corresponds to area of 7.2 Height = $7.2 \div 2 = 3.6$ (cm)	A1	1.1
		(3)	
(b)	$[Q_2 =] (248+) \frac{22}{35} \times 4 \qquad \text{or} (\text{use of } (n+1)) (248+) \frac{22.5}{35} \times 4$ = awrt 250.5 (g) or 250.6	M1	1.1
	= awrt 250.5 (g) or 250.6	A1	1.1
		(2)	
(c)	Mean = awrt 250.4 (g)	B1	1.1
	$\left[\sigma_{x}=\right]\sqrt{\frac{5644171.75}{90}-\left(\frac{22535.5}{90}\right)^{2}}=\sqrt{15.64}$	M1	1.1
	= awrt 4.0 (g)	A1	1.1
	Accept $\left(s_x = \sqrt{\frac{5644171.75 - 90\left(\frac{22535.5}{90}\right)^2}{89}} = 3.977 \right)$	(3)	
(d)	$H_0: \mu = 250$ $H_1: \mu > 250$	B1	2.:
	$\overline{X} \sim N\left(250, \frac{4^2}{90}\right) \text{ and } \overline{X} > 250.4$	M1	3.
	$P(\overline{X} > 250.4) = 0.171$	A1	3.4
	0.171 > 0.05 or $z = 0.9486 < 1.6449$	A1	1.1
	There is insufficient evidence that the mean weight of coffee is greater than 250 g, or there is no evidence to support the sellers claim.	A1	2.2
		(5)	
(e)	It is consistent as (the estimate of) the mean is close to (the estimate of) the median which is true for the normal distribution.	B1ft	3.5
		(1)	
		(14 n	nark

Notes:
(a) B1: for correct width
M1: for clear attempt to relate the area to frequency.
May be implied by their height \times their width = 7.2
A1: for height = 3.6 cm
(b) M1: for $\frac{22}{35} \times 4$ or $\frac{22.5}{35} \times 4$
A1: awrt 250.5 or 250.6
(c) B1: awrt 250.4
M1: for a correct expression for σ or s , can ft their mean
A1: awrt 4.0 (allow $s = awrt 4.0$)
(d) B1: hypotheses stated correctly
M1: for selecting a correct model, (stated or implied)
A1: for use of the correct model to find $p = awrt 0.171$ (allow $z = awrt 0.948$)
A1: for a correct calculation, comparison and correct statement
A1: for a correct conclusion in context mentioning mean weight and 250
(e) B1: evaluating the validity of the model used in (d)

Question	Scheme	Marks	AOs
2(a)	Not suitable with a correct reason eg the points do not lie close to a straight line. there appear to be two populations if <i>G</i> and <i>H</i> were removed it appears to be a negative correlation	B1	1.2
		(1)	
(b)	$H_0: \rho = 0 H_1: \rho > 0$	B1	2.5
	Critical value 0.5509	M1	1.1a
	Reject H ₀		
	There is evidence that pmcc is greater than zero	A1	2.2b
		(3)	
(c)	Beijing and Jacksonville	B1	2.2a
		(1)	
(d)	Beijing and Jacksonville are the closest to the equator	B1	2.4
		(1)	
(e)	Use data from one place.	B1	2.4
		(1)	
		(7 r	narks)
Notes:			
(a) B1: for a	a correct statement using the data in the table		
M1: for	both hypotheses in terms of ρ selecting a suitable critical value compatible with their H ₁ a correct conclusion stated		
(c) B1: both	Beijing and Jacksonville – they do not need to be attached to G and H	correctly.	
(d) B1: for a part(c)	the idea they are near the equator dependent only Beijing or Jacksonvill	e being give	en in

3

Question	Scheme	Marks	AOs
3 (a)	[$A = no. of bulbs that grow into plants with blue flowers,$] $A \sim B(40, 0.36)$	M1	3.3
	$p = P(A \ge 21) = 0.0240$	A1	1.1b
	C = no. of bags with more than 20 bulbs that grow into blue flowers, $C \sim B(5, p)$	M1	3.3
	So $P(C \le 1) = 0.9945$ awrt 0.995	A1	1.1b
		(4)	
(b)	[$T \sim$ number of bulbs that grow into blue flowers] $T \sim B(n, 0.36)$		
	T can be approximated by N($0.36n$, $0.2304n$)	B1	3.4
	$P\left(Z < \frac{244.5 - 0.36n}{\sqrt{0.2304n}}\right) = 0.9479$	M1	1.1b
	$\frac{244.5 - 0.36n}{\sqrt{0.2304n}} = 1.625 \text{ or } \frac{244.5 - 0.36x^2}{0.48x} = 1.625$	M1 A1	3.4 1.1b
	$0.36n + 0.78\sqrt{n} - 244.5 = 0$	M1	1.1b
	n = 625	Alcso	1.1b
		(6)	
	1	(10 r	narks)
Notes:			
(a) M1: for	selecting an appropriate model for A		
A1: for	a correct value of the parameter p for C		
M1: for	selecting an appropriate model for C		
A1: for	awrt 0.995		
(b) B1: for a	correct normal distribution		
M1: for	correct use of continuity correction equal to a z value where $ z > 1$		
M1: for	standardisation with their μ and σ		
	a correct equation		
M1: usi	ng a correct method to solve their 3-term quadratic on its own cso		

Question	Scheme	Marks	AOs
4 (a)	$\mathbf{P}(S \cap D') = 0$	B1	1.1b
		(1)	
(b)	$P(C \mid S \cap D) = \frac{0.27}{0.6} = \frac{9}{20} = 0.45$	M1	3.1b
	∴ 80×"0.45"	M1	1.1b
	=36	A1	1.1b
		(3)	
(c)	$[P(C) \times P(S) = P(C \cap S)]$		
	$P(S) = 0.6, P(C) = 0.27 + v + u, P(S \cap C) = 0.27$	M1	3.1a
	$0.6 \times (0.27 + u + v) = 0.27$ or $u + v = 0.18$ o.e	A1	1.1b
	$\left[P(D \mid C) = \frac{P(D \cap C)}{P(C)} \right] P(D \cap C) = 0.27 + v$	M1	3.1a
	$\frac{14}{15} = \frac{0.27 + v}{0.27 + v + u}$ or $14u - v = 0.27$ o.e	A1	1.1b
	15u = 0.45	M1dd	1.1b
	u = 0.03 $v = 0.15$	A1	1.1b
	<i>w</i> = 0.22	A1ft	1.1b
		(7)	
		(11 n	narks)
Notes:			
(a) B1: con	rect answer only		
80	a correct ratio of probabilities formula with at least one correct value correct answer	and multiply	ing by
used wit	r translating the problem and realising the equation $P(C) \times P(S) = P(C)$ h at least 2 parts correct.	$C \cap S$) needs	to be
	rrect equation a correct probability formula with $P(D \cap C) = 0.27 + v$		
	cond correct equation		
	lependent on the previous 2 method marks being awarded. Solving the		neous
equation $A1: u co$	s by eliminating one variable. May be implied by either <i>u</i> or <i>v</i> correct rrect		
A1: <i>v</i> co			
A1ft: w	= 0.22, ft <i>their</i> u, v provided that $u + v + w < 0.4$		

Question	Scheme	Marks	AOs
5(a)	$P(L_x > 160) = P\left(Z > \frac{160 - 150}{25}\right)$		
	= P(Z > 0.4)		
	=1-0.6554		
	= awrt 0.345 0.34457	B1	1.1b
	Expected number = $12 \times "0.345"$	M1	1.1b
	= 4.13 (allow 4.14)	A1	1.1b
		(3)	
(b)	$P(L_{\gamma} < 180) = 0.841621$	B1	3.4
	$\frac{180-160}{\sigma} = 0.8416$	M1	1.1b
	$\sigma = $ awrt 23.8	A1	1.1b
		(3)	
(c)	The standard deviations for two companies are close but the mean for company <i>Y</i> is higher	M1	2.4
	therefore choose company Y	A1	2.2b
		(2)	
		(8 n	narks)
Notes:			
	rt 0.345 multiplying their probability by 12 3 (allow 4.14)		
	use of the correct model to find the correct value of z awrt 0.842 standardising = to a Z value $0.5 < Z < 1$ rt 23.8		
	a correct reason following their part(b) making an inference that follows their part(b)		

Question	Scheme	Marks	AOs
1	r = (-4.5i + 3j)	B1	1.1b
	Use of $\mathbf{r} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$	M1	3.1b
	$(-4.5\mathbf{i} + 3\mathbf{j}) = 3\mathbf{u} + 0.5(\mathbf{i} - 2\mathbf{j}) 3^2$	A1 ft	1.1b
	$\mathbf{u} = (-3\mathbf{i} + 4\mathbf{j})$	A1	1.1b
		(4)	
	(4 marks		
Notes:			

B1: Correct displacement vector

M1: Use of correct strategy and/or formula to give equation in **u** only (could be obtained by two integrations)

A1ft: Correct equation in **u** only, following their displacement vector

A1: Correct answer

Question	Scheme	Marks	AOs
2	Differentiate wrt t	M1	1.1a
	a = (2t - 3) i - 12 j	A1	1.1b
	$(2t-3)^2 + (-12)^2$	M1	1.1b
	$(2t-3)^2 + (-12)^2 = (6.5 / 0.5)^2$ oe	M1	2.1
	$4t^2 - 12t - 16 = 0$	A1	1.1b
	(t-4)(t+1) = 0	M1	1.1b
	<i>t</i> = 4	A1	1.1b
		(7)	
	(7 marks)		
Notes:			

M1: At least one power going down

A1: A correct expression

M1: Sum of squares of components (with or without square root) of ${\bf a}$ or ${\bf F}$

M1: Equating magnitude to 6.5/0.5 or 6.5 as appropriate and squaring both sides

A1: Correct quadratic = 0 in any form

M1: Attempt to solve a 3 term quadratic

A1: 4

Question	Scheme	Marks	AOs	
3 (a)	Resolve perp to the plane	M1	3.1b	
	$R + 25\sin 30^\circ = 3g\cos 20^\circ$	A1	1.1b	
	Equation of motion up the plane	M1	3.1b	
	$25\cos 30^{\circ} - 3g\sin 20^{\circ} - F = 3a$	A1	1.1b	
	F = 0.3R	B1	1.2	
	Correct strategy: sub for <i>F</i> and solve for <i>a</i>	M1	3.1b	
	$a = 2.4 \text{ or } 2.35 \text{ (m s}^{-2})$	A1	2.2a	
		(7)		
(b)	e.g. Include air resistance	B1	3.5c	
		(1)		
(c)	$R = 3g\cos 20^\circ$ so $F\max = 0.9 g\cos 20^\circ$	B1	3.1b	
	Consider $3g\sin 20^\circ - 0.9g\cos 20^\circ$	M1	2.1	
	Since > 0 , box moves down plane. *	A1*	2.2a	
		(3)		
		(11 m	(11 marks)	
Notes:				

(a)

M1: Using an appropriate strategy to set up first of two equations, with usual rules applying

A1: *g* does not need to be substituted

M1: Using an appropriate strategy to set up second of two equations, with usual rules applying A1: Neither g nor F need to be substituted (-1 each error)

B1: F = 0.3R seen

M1: Correct overall strategy to solve problem by substituting for *F* and solving for *a*

A1: Only possible answers, since g = 9.8 used.

(b)

B1: e.g. include air resistance, allow for the weight of the rope

(c)

B1: Correct overall strategy (First equation could be implied)

M1: Must be difference or a comparison of the two values

A1*: Given answer

Question	Scheme	Marks	AOs
4 (a)	Moments about A (or any other complete method)	M1	3.3
	$T\cos 30^{\circ} \ge (1\sin 30^{\circ}) = 20g \ge 1.5$	A1	1.1.t
	$T\cos 30^{\circ} \ge (1\sin 30^{\circ}) = 20g \ge 1.5$	A1	1.1.ł
	T = 679 or 680 (N)	A1	1.1.t
		(4)	
(b)	Resolve horizontally	M1	3.1b
	$X = T\cos 60^{\circ}$	A1	1.1b
	Resolve vertically	M1	3.1t
	$Y = T\cos 30^{\circ} - 20g$	A1	1.1t
	Use of $\tan q = \frac{Y}{X}$ and sub for T	M1	3.4
	49° (or better), below horizontal, away from wall	A1	2.2a
		(6)	
(c)	Tension would increase as you move from <i>D</i> to <i>C</i>	B1	3.5a
	Since each point of the rope has to support the length of rope below it	B1	2.4
		(2)	
(d)	Take moments about G , $1.5Y = 0$	M1	3.3
	Y = 0 hence force acts horizontally.*	A1*	2.2a
		(2)	
		(14 n	narks
Notes:			
A1: (A1A0 A1: (A0A0	ct overall strategy e.g. $M(A)$, with usual rules, to give equation in <i>T</i> only one error) Condone 1 error two or more errors) 679 or 680 (since $g = 9.8$ used)		

M1: Using an appropriate strategy to set up first of two equations, with usual rules applying

e.g. Resolve horiz. or M(C)

A1: Correct equation in *X* only

M1: Using an appropriate strategy to set up second of two equations, with usual rules applying

e.g. Resolve vert. or M(D)

- **A1:** Correct equation in *Y* only
- **M1:** Using the model and their X and Y

A1:	49 or better (since g cancels) Need all three bits of answer to score this mark	
	or any other appropriate angle e.g 41° to wall, downwards and away from wall	

(c)

B1: Appropriate equivalent comment

B1: Appropriate equivalent reason

(**d**)

M1: Using the model and any other complete method e.g. the three force condition for equilibrium A1*: Correct conclusion GIVEN ANSWER

Question	Scheme	Marks	AOs
5(a)	Using the model and horizontal motion: $s = ut$	M1	3.3
	$12 = T \ge 45 \cos 10^{\circ}$	A1	1.1b
	T = 0.2707	A1	1.1b
	Using the model and vertical motion: $s = ut + \frac{1}{2}at^2$	M1	3.4
	$s = 45T\sin 10^\circ + 4.9T^2$	A1	1.1b
	Correct strategy: sub for T and find s	M1	3.1b
	d = 3.5 - 2.4752 - 1	M1	3.1b
	= 2.5 (cm) (2 SF)	A1	2.2a
		(8)	
(b)	Using the model and vertical motion: $v = u + at$	M1	3.3
	$v = 45\sin 10^{\circ} + 9.8T$	A1	1.1t
	Speed = $((45\cos 10^{\circ})^2 + v^2)^{0.5}$	M1	3.1t
	$46 (m s^{-1})$ (2 SF)	A1	1.1t
		(4)	
(c)	Model does not take account of air resistance.	B1	3.5b
	Model does not take account of the size of the tennis ball	B1	3.5b
		(2)	
		(14 r	narks
Notes:			
A1: Correc A1: 0.271 o M1: Using A1: Correc M1: Sub fo M1: Correc	the model and correct strategy		
M1: Using A1: Correct M1: Must h	the model and correct strategy e equation have found a v and usual rules apply. Square root is needed. SF) is only correct answer		

1	>
11	וי

B1: Other appropriate answer e.g. spin of the ball, wind effect

B1: Other appropriate answer e.g. spin of the ball, wind effect