9MA0/01: Pure Mathematics Paper 1 Mark scheme

Quest	ion Scheme	Marks	AOs
1 (a) $1 = \frac{1}{2} $	B1	1.1b
	Area(R) $\approx \frac{1}{2} \times 0.5 \times \left[\frac{0.5 + 2(0.6742 + 0.8284 + 0.9686) + 1.0981}{2} \right]$	<u>M1</u>	1.1b
	$\left\{ = \frac{1}{4} \times 6.5405 = 1.635125 \right\} = 1.635 (3 \text{ dp})$	A1	1.1b
		(3)	
(b)	 Any valid reason, for example Increase the number of strips Decrease the width of the strips Use more trapezia between x = 1 and x = 3 	B1	2.4
		(1)	
(c)(i) $\left\{\int_{1}^{3} \frac{5x}{1+\sqrt{x}} \mathrm{d}x\right\} = 5("1.635") = 8.175$	B1ft	2.2a
(c)(i	i) $\left\{ \int_{1}^{3} \left(6 + \frac{x}{1 + \sqrt{x}} \right) dx \right\} = 6(2) + ("1.635") = 13.635$	B1ft	2.2a
		(2)	
		(6 n	narks)
Quest	on 1 Notes:		
(a)			
B1:	Outside brackets $\frac{1}{2} \times 0.5$ or $\frac{0.5}{2}$ or 0.25 or $\frac{1}{4}$		
M1:	For structure of trapezium rule [].		
	No errors are allowed, e.g. an omission of a <i>y</i> -ordinate or an extra <i>y</i> -ordinate or a <i>y</i> -ordinate.	repeated	
A1:	Correct method leading to a correct answer only of 1.635		
(b)			
B1: (c)	See scheme		
B1:	8.175 or a value which is 5 \times their answer to part (a)		
	Note: Allow B1ft for 8.176 (to 3 dp) which is found from $5(1.63125) = 8.175625$	i	
	Note: Do not allow an answer of 8.1886 which is found directly from integration		
(d)			
B1:	13.635 or a value which is 12 + their answer to part (a)		
	Note: Do not allow an answer of 13.6377 which is found directly from integrat	tion	

Question	Scheme	Marks	AOs
2 (a)	$(4+5x)^{\frac{1}{2}} = (4)^{\frac{1}{2}} \left(1+\frac{5x}{4}\right)^{\frac{1}{2}} = 2\left(1+\frac{5x}{4}\right)^{\frac{1}{2}}$	B1	1.1b
	$= \{2\} \left[1 + \left(\frac{1}{2}\right) \left(\frac{5x}{4}\right) + \frac{\left(\frac{1}{2}\right) \left(-\frac{1}{2}\right)}{2!} \left(\frac{5x}{4}\right)^2 + \dots \right]$	M1	1.1b
		A1ft	1.1b
	$= 2 + \frac{5}{4}x - \frac{25}{64}x^2 + \dots$	A1	2.1
		(4)	
(b)(i)	$\left\{ x = \frac{1}{10} \Longrightarrow \right\} \left(4 + 5(0.1) \right)^{\frac{1}{2}}$	M1	1.1b
	$=\sqrt{4.5} = \frac{3}{2}\sqrt{2}$ or $\frac{3}{\sqrt{2}}$		
	$\frac{3}{2}\sqrt{2} \text{ or } 1.5\sqrt{2} \text{ or } \frac{3}{\sqrt{2}} = 2 + \frac{5}{4}\left(\frac{1}{10}\right) - \frac{25}{64}\left(\frac{1}{10}\right)^2 + \dots \{=2.121\dots\}$ $\Rightarrow \frac{3}{2}\sqrt{2} = \frac{543}{256} \text{ or } \frac{3}{\sqrt{2}} = \frac{543}{256} \Rightarrow \sqrt{2} = \dots$	M1	3.1a
	So, $\sqrt{2} = \frac{181}{128}$ or $\sqrt{2} = \frac{256}{181}$	A1	1.1b
(b)(ii)	$x = \frac{1}{10}$ satisfies $ x < \frac{4}{5}$ (o.e.), so the approximation is valid.	B1	2.3
		(4)	
		(8 n	narks)
L			

Quest	ion 2 Notes:
(a)	
B1:	Manipulates $(4 + 5x)^{\frac{1}{2}}$ by taking out a factor of $(4)^{\frac{1}{2}}$ or 2
M1:	Expands $(+ \lambda x)^{\frac{1}{2}}$ to give at least 2 terms which can be simplified or un-simplified,
	E.g. $1 + \left(\frac{1}{2}\right)(\lambda x)$ or $\left(\frac{1}{2}\right)(\lambda x) + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}(\lambda x)^2$ or $1 + \dots + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}(\lambda x)^2$
	where λ is a numerical value and where $\lambda \neq 1$.
A1ft:	A correct simplified or un-simplified $1 + \left(\frac{1}{2}\right)(\lambda x) + \frac{(\frac{1}{2})(-\frac{1}{2})}{2!}(\lambda x)^2$ expansion with consistent (λx)
A1:	Fully correct solution leading to $2 + \frac{5}{4}x + kx^2$, where $k = -\frac{25}{64}$
(b)(i)	
M1:	Attempts to substitute $x = \frac{1}{10}$ or 0.1 into $(4 + 5x)^{\frac{1}{2}}$
M1:	A complete method of finding an approximate value for $\sqrt{2}$. E.g.
	• substituting $x = \frac{1}{10}$ or 0.1 into their part (a) binomial expansion and equating the result to
	an expression of the form $\alpha \sqrt{2}$ or $\frac{\beta}{\sqrt{2}}$; α , $\beta \neq 0$
	• followed by re-arranging to give $\sqrt{2} = \dots$
A1:	$\frac{181}{128}$ or any equivalent fraction, e.g. $\frac{362}{256}$ or $\frac{543}{384}$
	Also allow $\frac{256}{181}$ or any equivalent fraction
(b)(ii)	
B1:	Explains that the approximation is valid because $x = \frac{1}{10}$ satisfies $ x < \frac{4}{5}$

Quest	on Scheme	Marks	AOs
3 (a)	$a_1 = 3, a_2 = 0, a_3 = 1.5, a_4 = 3$	M1	1.1b
	$\sum_{r=1}^{100} a_r = 33(4.5) + 3$	M1	2.2a
	= 151.5	A1	1.1b
		(3)	
(b)	$\sum_{r=1}^{100} a_r + \sum_{r=1}^{99} a_r = (2)(151.5) - 3 = 300$	B1ft	2.2a
		(1)	
		(4 n	narks)
Questi	on 3 Notes:		
(a)			
M1:	Uses the formula $a_{n+1} = \frac{a_n - 3}{a_n - 2}$, with $a_1 = 3$ to generate values for a_2 , a_3 and a_4		
M1:	Finds $a_4 = 3$ and deduces $\sum_{r=1}^{100} a_r = 33("3" + "0" + "1.5") + "3"$		
A1:	which leads to a correct answer of 151.5		
(b)			
B1ft:	Follow through on their periodic function. Deduces that either		
	• $\sum_{r=1}^{100} a_r + \sum_{r=1}^{99} a_r = (2)("151.5") - 3 = 300$		
	• $\sum_{r=1}^{100} a_r + \sum_{r=1}^{99} a_r = "151.5" + (33)("3" + "0" + "1.5") = 151.5 + 148.5 = 30$)0	

Quest	on Scheme	Marks	AOs
4 (a)	$\overrightarrow{OA} = \mathbf{i} + 7\mathbf{j} - 2\mathbf{k}$, $\overrightarrow{OB} = 4\mathbf{i} + 3\mathbf{j} + 3\mathbf{k}$, $\overrightarrow{OC} = 2\mathbf{i} + 10\mathbf{j} + 9\mathbf{k}$		
	$\overrightarrow{OD} = \overrightarrow{OC} + \overrightarrow{BA} = (2\mathbf{i} + 10\mathbf{j} + 9\mathbf{k}) + (-3\mathbf{i} + 4\mathbf{j} - 5\mathbf{k})$ or $\overrightarrow{OD} = \overrightarrow{OA} + \overrightarrow{BC} = (\mathbf{i} + 7\mathbf{j} - 2\mathbf{k}) + (-2\mathbf{i} + 7\mathbf{j} + 6\mathbf{k})$	M1	3.1a
	So $\overrightarrow{OD} = -\mathbf{i} + 14\mathbf{j} + 4\mathbf{k}$	A1	1.1b
		(2)	
(b)	$\left\{\overrightarrow{AB} = 3\mathbf{i} - 4\mathbf{j} + 5\mathbf{k} \implies \right\} \left \overrightarrow{AB}\right = \sqrt{(3)^2 + (-4)^2 + (5)^2} \left\{=\sqrt{50} = 5\sqrt{2}\right\}$	M1	1.1b
	As $\left \overrightarrow{AX} \right = 10\sqrt{2}$ then $\left \overrightarrow{AX} \right = 2 \left \overrightarrow{AB} \right \Rightarrow \overrightarrow{AX} = 2 \overrightarrow{AB}$		
	$\overrightarrow{OX} = \overrightarrow{OA} + 2\overrightarrow{AB} = (\mathbf{i} + 7\mathbf{j} - 2\mathbf{k}) + 2(3\mathbf{i} - 4\mathbf{j} + 5\mathbf{k})$ or $\overrightarrow{OX} = \overrightarrow{OB} + \overrightarrow{AB} = (4 + 3\mathbf{j} + 3\mathbf{k}) + (3\mathbf{i} - 4\mathbf{j} + 5\mathbf{k})$	M1	3.1a
	So $\overrightarrow{OX} = 7i - j + 8k$ only	A1	1.1b
		(3)	
		(5 n	narks)
Questi	on 4 Notes:		
(a)			
M1:	A complete method for finding the position vector of D		
A1:	$-\mathbf{i} + 14\mathbf{j} + 4\mathbf{k}$ or $\begin{pmatrix} -1\\ 14\\ 4 \end{pmatrix}$		
(b)			
M1:	A complete attempt to find $\left \overrightarrow{AB} \right $ or $\left \overrightarrow{BA} \right $		
M1:	A complete process for finding the position vector of <i>X</i>		
A1:	$7\mathbf{i} - \mathbf{j} + 8\mathbf{k}$ or $\begin{pmatrix} 7\\ -1\\ 8 \end{pmatrix}$		

Question	Scheme	Marks	AOs
5 (a)(i)	$f(x) = x^3 + ax^2 - ax + 48, \ x \in \mathbb{R}$		
	$f(-6) = (-6)^3 + a(-6)^2 - a(-6) + 48$	M1	1.1b
	$= -216 + 36a + 6a + 48 = 0 \Rightarrow 42a = 168 \Rightarrow a = 4 *$	A1*	1.1b
(a)(ii)	Hence $f(x) = (x + Q)(x^2 + Q)$	M1	2.2a
	Hence, $f(x) = (x + 6)(x^2 - 2x + 8)$	A1	1.1b
		(4)	
(b)	$2\log_2(x+2) + \log_2 x - \log_2(x-6) = 3$		
	E.g. • $\log_2(x+2)^2 + \log_2 x - \log_2(x-6) = 3$ • $2\log_2(x+2) + \log_2\left(\frac{x}{x-6}\right) = 3$	M1	1.2
	$\log_2\left(\frac{x(x+2)^2}{(x-6)}\right) = 3 \qquad \left[\text{ or } \log_2\left(x(x+2)^2\right) = \log_2\left(8(x-6)\right) \right]$	M1	1.1b
	$\left(\frac{x(x+2)^2}{(x-6)}\right) = 2^3 \qquad \left\{\text{i.e. } \log_2 a = 3 \implies a = 2^3 \text{ or } 8\right\}$	B1	1.1b
	$x(x+2)^{2} = 8(x-6) \implies x(x^{2}+4x+4) = 8x-48$		
	$\Rightarrow x^{3} + 4x^{3} + 4x = 8x - 48 \Rightarrow x^{3} + 4x^{3} - 4x + 48 = 0 *$	A1 *	2.1
		(4)	
(c)	$2\log_2(x+2) + \log_2 x - \log_2(x-6) = 3 \implies x^3 + 4x^3 - 4x + 48 = 0$		
	$\Rightarrow (x+6)(x^2-2x+8) = 0$		
	Reason 1: E.g.		
	• $\log_2 x$ is not defined when $x = -6$		
	• $\log_2(x-6)$ is not defined when $x = -6$		
	• $x = -6$, but $\log_2 x$ is only defined for $x > 0$		
	Reason 2:		
	• $b^2 - 4ac = -28 < 0$, so $(x^2 - 2x + 8) = 0$ has no (real) roots		
	At least one of Reason 1 or Reason 2	B1	2.4
	Both Reason 1 and Reason 2	B1	2.1
		(2)	
		(10 r	narks)

Quest	ion 5 Notes:
(a)(i)	
M1:	Applies f(-6)
A1*:	Applies $f(-6) = 0$ to show that $a = 4$
(a)(ii)	
M1:	Deduces $(x + 6)$ is a factor of $f(x)$ and attempts to find a quadratic factor of $f(x)$ by either equating coefficients or by algebraic long division
A1:	$(x+6)(x^2-2x+8)$
(b)	
M1:	Evidence of applying a correct law of logarithms
M1:	Uses correct laws of logarithms to give either
	• an expression of the form $\log_2(\mathbf{h}(x)) = k$, where k is a constant
	• an expression of the form $\log_2(g(x)) = \log_2(h(x))$
B1:	Evidence in their working of $\log_2 a = 3 \implies a = 2^3$ or 8
A1*:	Correctly proves $x^3 + 4x^3 - 4x + 48 = 0$ with no errors seen
(c)	
B1:	See scheme
B1:	See scheme

Questio	on Scheme	Marks	AOs
6 (a)	Attempts to use an appropriate model;		
0 (u)	e.g. $y = A(3-x)(3+x)$ or $y = A(9-x^2)$	M1	3.3
	e.g. $y = A(9 - x^2)$		
	Substitutes $x = 0, y = 5 \Rightarrow 5 = A(9 - 0) \Rightarrow A = \frac{5}{2}$	M1	3.1b
	Substitutes $x = 0, y = 3 \implies 3 = A(3 = 0) \implies A = \frac{1}{9}$		
	$y = \frac{5}{9}(9-x^2)$ or $y = \frac{5}{9}(3-x)(3+x), \{-3 \le x \le 3\}$	A1	1.1b
		(3)	
(b)	Substitutes $x = \frac{2.4}{2}$ into their $y = \frac{5}{9}(9 - x^2)$	M1	3.4
	$y = \frac{5}{9}(9 - x^2) = 4.2 > 4.1 \Rightarrow$ Coach can enter the tunnel	A1	2.2b
		(2)	
(b) Alt 1	$4.1 = \frac{5}{9}(9 - x^2) \Rightarrow x = \frac{9\sqrt{2}}{10}, \text{ so maximum width} = 2\left(\frac{9\sqrt{2}}{10}\right)$	M1	3.4
	$= 2.545 > 2.4 \implies$ Coach can enter the tunnel	A1	2.2b
		(2)	
(c)	 E.g. Coach needs to enter through the centre of the tunnel. This will only be possible if it is a one-way tunnel In real-life the road may be cambered (and not horizontal) The quadratic curve <i>BCA</i> is modelled for the entrance to the tunnel but we do not know if this curve is valid throughout the entire length of the tunnel There may be overhead lights in the tunnel which may block the path of the coach 	B1	3.5b
	A	(1)	
		(6 n	narks)
Questic	n 6 Notes:		
(a)			
M1:	Franslates the given situation into an appropriate quadratic model – see scheme		
M1:	Applies the maximum height constraint in an attempt to find the equation of the m	odel – see s	cheme
A1:	Finds a suitable equation – see scheme		
(b)			
M1:	See scheme		
	Applies a fully correct argument to infer {by assuming that curve <i>BCA</i> is quadratic and the given measurements are correct}, that is possible for the coach to enter the tunnel		
(c)			

$7 \\ \left\{ \begin{cases} xe^{2x} dx \end{cases}, \begin{cases} u = x \Rightarrow \frac{du}{dx} = 1 \\ \frac{dv}{dx} = e^{2x} \Rightarrow v = \frac{1}{2}e^{2x} \end{cases} & M1 & 3.1a \\ \hline \{\int xe^{2x} dx \ \} = \frac{1}{2}xe^{2x} - \int \frac{1}{2}e^{2x} \{dx \} & M1 & 3.1a \\ \hline \{\int 2e^{2x} - xe^{2x} dx \ \} = e^{2x} - \left(\frac{1}{2}xe^{2x} - \int \frac{1}{2}e^{2x} \{dx \}\right) & M1 & 1.1b \\ \hline = e^{2x} - \left(\frac{1}{2}xe^{2x} - \int \frac{1}{2}e^{2x} \{dx \}\right) & A1 & 1.1b \\ \hline = e^{2x} - \left(\frac{1}{2}xe^{2x} - \frac{1}{4}e^{2x}\right) & A1 & 1.1b \\ \hline Area(R) = \int_{0}^{2}2e^{2x} - xe^{2x} dx = \left[\frac{5}{4}e^{2x} - \frac{1}{2}xe^{2x}\right]_{0}^{2} & M1 & 2.2a \\ \hline = \left(\frac{5}{4}e^{4} - e^{4}\right) - \left(\frac{5}{4}e^{2(0)} - \frac{1}{2}(0)e^{0}\right) = \frac{1}{4}e^{4} - \frac{5}{4} & A1 & 2.1 \\ \hline & 10 & 10 \\ \hline \\ Aht 1 & 10 & 10 \\ \hline \\ Aht 1 & 10 & 10 \\ \hline \\ Aht 1 & 10 & 10 \\ \hline \\ Aht 1 & 10 & 10 \\ \hline \\ Aht 1 & 10 & 10 \\ \hline \\ Aht 1 & 10 & 10 \\ \hline \\ Aht 1 & 10 & 10 \\ \hline \\ Aht 1 & 10 & 10 \\ \hline \\ Aht 2 & 1$	Question	Scheme	Marks	AOs
$\frac{\left\{ \int 2e^{2x} - xe^{2x} dx \right\} = e^{2x} - \left(\frac{1}{2}xe^{2x} - \int \frac{1}{2}e^{2x}\left\{dx\right\} \right)}{\left\{ \int 2e^{2x} - xe^{2x} dx \right\} = e^{2x} - \left(\frac{1}{2}xe^{2x} - \int \frac{1}{2}e^{2x}\left\{dx\right\} \right)} \qquad M1 \qquad 1.1b$ $= e^{2x} - \left(\frac{1}{2}xe^{2x} - \frac{1}{4}e^{2x} \right)$ $A1 \qquad 1.1b$ $Area(R) = \int_{0}^{2}2e^{2x} - xe^{2x} dx = \left[\frac{5}{4}e^{2x} - \frac{1}{2}xe^{2x}\right]_{0}^{2}$ $M1 \qquad 2.2a$ $= \left(\frac{5}{4}e^{4} - e^{4}\right) - \left(\frac{5}{4}e^{2(0)} - \frac{1}{2}(0)e^{0}\right) = \frac{1}{4}e^{4} - \frac{5}{4}$ $A1 \qquad 2.1$ (5) $A1 \qquad 2.1a$	7	$\left\{ \int x e^{2x} dx \right\}, \left\{ \begin{aligned} u &= x \qquad \Rightarrow \frac{du}{dx} = 1 \\ \frac{dv}{dx} &= e^{2x} \qquad \Rightarrow v = \frac{1}{2} e^{2x} \end{aligned} \right\}$		
$ \frac{\left(y^{2}-y^{2}-y^{2}-y^{2}-y^{2}-y^{2}-y^{2}-y^{2}-y^{2}\right)}{=} A1 1.1b \\ \frac{1.1b}{Area(R) = \int_{0}^{2} 2e^{2x} - xe^{2x} dx = \left[\frac{5}{4}e^{2x} - \frac{1}{2}xe^{2x}\right]_{0}^{2}}{= \left(\frac{5}{4}e^{4} - e^{4}\right) - \left(\frac{5}{4}e^{2(0)} - \frac{1}{2}(0)e^{0}\right) = \frac{1}{4}e^{4} - \frac{5}{4}} A1 2.1a \\ = \left(\frac{5}{4}e^{4} - e^{4}\right) - \left(\frac{5}{4}e^{2(0)} - \frac{1}{2}(0)e^{0}\right) = \frac{1}{4}e^{4} - \frac{5}{4} A1 2.1a \\ = \left(\frac{5}{4}e^{4} - e^{4}\right) - \left(\frac{5}{4}e^{2(0)} - \frac{1}{2}(0)e^{0}\right) = \frac{1}{4}e^{4} - \frac{5}{4} A1 2.1a \\ = \left(\frac{5}{4}e^{4} - e^{4}\right) - \left(\frac{1}{2}(2 - x)e^{2x} dx\right), \left\{\frac{u = 2 - x \Rightarrow \frac{du}{dx} = -1}{\left(\frac{1}{4}e^{2x}\right)} \right\} \\ = \frac{1}{2}(2 - x)e^{2x} - xe^{2x} dx = \int (2 - x)e^{2x} dx, \left\{\frac{u = 2 - x \Rightarrow \frac{du}{dx} = -1}{\left(\frac{1}{4}e^{2x}\right)} \right\} \\ = \frac{1}{2}(2 - x)e^{2x} - \int -\frac{1}{2}e^{2x} dx, \left\{\frac{u = 2 - x \Rightarrow \frac{du}{dx} = -1}{\left(\frac{1}{4}e^{2x}\right)} \right\} \\ = \frac{1}{2}(2 - x)e^{2x} - \int -\frac{1}{2}e^{2x} dx, \left\{\frac{u = 2 - x \Rightarrow \frac{du}{dx} = -1}{\left(\frac{1}{4}e^{2x}\right)} \right\} \\ = \frac{1}{2}(2 - x)e^{2x} - \int -\frac{1}{2}e^{2x} dx, \left\{\frac{u = 2 - x \Rightarrow \frac{du}{dx} = -1}{\left(\frac{1}{4}e^{2x}\right)} \right\} \\ = \frac{1}{2}(2 - x)e^{2x} - \int -\frac{1}{2}e^{2x} dx, \left\{\frac{u = 2 - x \Rightarrow \frac{du}{dx} = -1}{\left(\frac{1}{4}e^{2x}\right)} \right\} \\ = \frac{1}{2}(2 - x)e^{2x} - \int -\frac{1}{2}e^{2x} dx, \left\{\frac{u = 2 - x \Rightarrow \frac{du}{dx} = -1}{\left(\frac{1}{4}e^{2x}\right)} \right\} \\ = \frac{1}{2}(2 - x)e^{2x} - \int -\frac{1}{2}e^{2x} dx, \left\{\frac{u = 2 - x \Rightarrow \frac{du}{dx} = -1}{\left(\frac{u + 1}{4}e^{2x}\right)} \right\} \\ = \frac{1}{2}(2 - x)e^{2x} - \int -\frac{1}{2}e^{2x} dx, \left\{\frac{u = 2 - x \Rightarrow \frac{du}{dx} = -1}{\left(\frac{u + 1}{4}e^{2x}\right)} \right\} \\ = \frac{1}{2}(2 - x)e^{2x} - \int -\frac{1}{2}e^{2x} dx, \left\{\frac{u = 2 - x \Rightarrow \frac{u = 1}{2}e^{2x}}{\left(\frac{u + 1}{4}e^{2x}\right)} \right]^{2} \\ = \frac{1}{2}(2 - x)e^{2x} + \frac{1}{4}e^{2x} \left\{\frac{u = 2 - x \Rightarrow \frac{u = 1}{2}e^{2x}}{\left(\frac{u + 1}{4}e^{2x}\right)} \right]^{2} \\ = \frac{1}{2}(2 - x)e^{2x} + \frac{1}{4}e^{2x} \left\{\frac{u = 2 - x \Rightarrow \frac{u = 1}{2}e^{2x}}{\left(\frac{u + 1}{4}e^{2x}\right)} \right]^{2} \\ = \frac{1}{2}(2 - x)e^{2x} + \frac{1}{4}e^{2x} \left\{\frac{u = 2 - x \Rightarrow \frac{u = 1}{2}e^{2x}}{\left(\frac{u + 1}{4}e^{2x}\right)} \right]^{2} \\ = \frac{1}{2}(2 - x)e^{2x} + \frac{1}{4}e^{2x} \left\{\frac{u = 2 - x \Rightarrow \frac{u = 1}{2}e^{2x}}{\left(\frac{u = 2 - x \Rightarrow \frac{u = 1}{2}e^{2x}}{\left(\frac{u = 2 - x \Rightarrow \frac{u = 1}{2}e^{2x}$		$\left\{\int xe^{2x} dx\right\} = \frac{1}{2}xe^{2x} - \int \frac{1}{2}e^{2x} \left\{dx\right\}$	M1	3.1a
$\frac{\left[\frac{1}{2}(2-x)e^{2x} - xe^{2x} dx = \left[\frac{5}{4}e^{2x} - \frac{1}{2}xe^{2x}\right]_{0}^{2}}{\left[\frac{1}{2}(2-x)e^{2x} dx = \int_{0}^{2}(2e^{2x} - xe^{2x} dx = \int_{0}^{2}(2e^{2x} - xe^{2x} dx)\right]_{0}^{2}} + \frac{1}{2}e^{2x} dx} = \int_{0}^{2}(2-x)e^{2x} dx$ $\frac{\left[\frac{1}{2}e^{2x} - xe^{2x} dx = \int_{0}^{2}(2-x)e^{2x} dx\right]_{0}}{\left[\frac{1}{2}(2-x)e^{2x} dx\right]_{0}^{2}} + \frac{1}{2}e^{2x}} dx}$ $\frac{M1}{M1} = \frac{1}{2}(2-x)e^{2x} - \int_{0}^{2}-\frac{1}{2}e^{2x} dx} dx$ $\frac{M1}{M1} = \frac{1}{10} dx$ $\frac{M1}{M1} = $		$\left\{ \int 2e^{2x} - xe^{2x} dx \right\} = e^{2x} - \left(\frac{1}{2}xe^{2x} - \int \frac{1}{2}e^{2x} \{ dx \} \right)$	M1	1.1b
$\frac{1}{1 + 1 + 2 + 2 + 3 + 3 + 5}{1 + 2 + 2 + 3 + 5 + 5} = \frac{1}{1 + 2 + 5 + 5} = \frac{1}{1 + 2 + 5 + 5 + 5} = \frac{1}{1 + 2 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5$		$= e^{2x} - \left(\frac{1}{2}xe^{2x} - \frac{1}{4}e^{2x}\right)$	A1	1.1b
$\frac{(4 - y)^{2}(4 - 2 - y)^{2} + 4 - 4}{(5)}$ $\frac{(5)}{(5)}$ $\frac{7}{\text{Alt 1}} \left\{ \int 2e^{2x} - xe^{2x} dx = \int (2 - x)e^{2x} dx \right\}, \left\{ \begin{array}{l} u = 2 - x \Rightarrow \frac{du}{dx} = -1 \\ \frac{dv}{dx} = e^{2x} \Rightarrow v = \frac{1}{2}e^{2x} \end{array} \right\}$ $\frac{1}{2}(2 - x)e^{2x} - \int -\frac{1}{2}e^{2x} \left\{ dx \right\} \qquad \frac{1}{2}e^{2x} \left\{ dx \right\}}{\frac{1}{2}(2 - x)e^{2x} + \frac{1}{4}e^{2x}} \qquad \frac{1}{2}e^{2x} \qquad \frac{1}{2}e^{2x} = \frac{1}{2}e^{2x} \left\{ dx \right\}$ $\frac{1}{2}(2 - x)e^{2x} + \frac{1}{4}e^{2x}}{\frac{1}{2}(2 - x)e^{2x} + \frac{1}{4}e^{2x}} \qquad \frac{1}{2}e^{2x} = \frac{1}{2}e^{2x} \left\{ dx \right\}$ $\frac{1}{2}(2 - x)e^{2x} + \frac{1}{4}e^{2x} = \frac{1}{2}e^{2x} \left\{ dx \right\}$ $\frac{1}{2}(2 - x)e^{2x} + \frac{1}{4}e^{2x}}{\frac{1}{2}e^{2x}} \qquad \frac{1}{2}e^{2x} = \frac{1}{2}e^{2x} \left\{ dx \right\}$ $\frac{1}{2}e^{2x} + \frac{1}{4}e^{2x} = \frac{1}{2}e^{2x} + \frac{1}{4}e^{2x} = \frac{1}{4}e^{2x} + \frac{1}{4}e^{2x} = \frac{1}{2}e^{2x} + \frac{1}{4}e^{2x} = \frac{1}{4}e^{2x} + \frac{1}{4}e^{2x} + 1$		Area(R) = $\int_0^2 2e^{2x} - xe^{2x} dx = \left[\frac{5}{4}e^{2x} - \frac{1}{2}xe^{2x}\right]_0^2$	M1	2.2a
$ \frac{7}{\text{Alt 1}} = \frac{1}{2}(2-x)e^{2x} - \int -\frac{1}{2}e^{2x} dx = \int (2-x)e^{2x} dx \right\}, \begin{cases} u = 2-x \Rightarrow \frac{du}{dx} = -1 \\ \frac{dv}{dx} = e^{2x} \Rightarrow v = \frac{1}{2}e^{2x} \end{cases} \qquad $		$= \left(\frac{5}{4}\mathbf{e}^{4} - \mathbf{e}^{4}\right) - \left(\frac{5}{4}\mathbf{e}^{2(0)} - \frac{1}{2}(0)\mathbf{e}^{0}\right) = \frac{1}{4}\mathbf{e}^{4} - \frac{5}{4}$	A1	2.1
Alt 1 $ \begin{cases} \begin{cases} \int 2e^{2x} - xe^{2x} dx = \int (2-x)e^{2x} dx \\ \frac{1}{2}e^{2x} - xe^{2x} dx = \int (2-x)e^{2x} dx \\ \frac{1}{2}e^{2x} dx = \int \frac{1}{2}e^{2x} dx \\ \frac{1}{2}e^{2x} - \int -\frac{1}{2}e^{2x} dx \\ \frac{1}{2}e^{2x} - \int -\frac{1}{2}e^{2x} dx \\ \frac{1}{2}e^{2x} dx \\ $			(5)	
Alt 1 $ \begin{cases} \begin{cases} \int 2e^{2x} - xe^{2x} dx = \int (2-x)e^{2x} dx \\ \frac{1}{2}e^{2x} - xe^{2x} dx = \int (2-x)e^{2x} dx \\ \frac{1}{2}e^{2x} dx = \int \frac{1}{2}e^{2x} dx \\ \frac{1}{2}e^{2x} - \int -\frac{1}{2}e^{2x} dx \\ \frac{1}{2}e^{2x} - \int -\frac{1}{2}e^{2x} dx \\ \frac{1}{2}e^{2x} dx \\ $				
$= \frac{1}{2}(2-x)e^{2x} - \int -\frac{1}{2}e^{2x} \{dx\} $ $= \frac{1}{2}(2-x)e^{2x} + \frac{1}{4}e^{2x} $ $A1 $ $I.1b$ $= \frac{1}{2}(2-x)e^{2x} + \frac{1}{4}e^{2x} $ $A1 $ $I.1b$ $\frac{1}{2}(2-x)e^{2x} + \frac{1}{4}e^{2x} = \frac{1}{2}\left[\frac{1}{2}(2-x)e^{2x} + \frac{1}{4}e^{2x}\right]_{0}^{2} $ $M1 $ $I.22a$ $= \left(0 + \frac{1}{4}e^{4}\right) - \left(\frac{1}{2}(2)e^{0} + \frac{1}{4}e^{0}\right) = \frac{1}{4}e^{4} - \frac{5}{4} $ $A1 $ $I.1b$ $I.1b$ $A1 $ $I.1b$		$\left\{\int 2e^{2x} - xe^{2x} dx = \int (2-x)e^{2x} dx\right\}, \begin{cases} u = 2-x \implies \frac{du}{dx} = -1\\ \frac{dv}{dx} = e^{2x} \implies v = \frac{1}{2}e^{2x} \end{cases}\right\}$		
$\frac{2}{1-x^2} = \frac{1}{2}(2-x)e^{2x} + \frac{1}{4}e^{2x}$ $\frac{1}{2}(2-x)e^{2x} + \frac{1}{4}e^{2x}$ $\frac{1}{2}(2-x)e^{2x} + \frac{1}{4}e^{2x}$ $\frac{1}{2}(2-x)e^{2x} + \frac{1}{4}e^{2x} = \frac{1}{2}\left[\frac{1}{2}(2-x)e^{2x} + \frac{1}{4}e^{2x}\right]_{0}^{2}$ $M1 = \frac{1}{2}(2-x)e^{2x} + \frac{1}{4}e^{2x} = \frac{1}{2}\left[\frac{1}{2}(2-x)e^{2x} + \frac{1}{4}e^{2x}\right]_{0}^{2}$ $M1 = \frac{1}{2}(2-x)e^{2x} + \frac{1}{4}e^{2x} = \frac{1}{2}\left[\frac{1}{2}(2-x)e^{2x} + \frac{1}{4}e^{2x}\right]_{0}^{2}$ $M1 = \frac{1}{2}(2-x)e^{2x} + \frac{1}{4}e^{2x} = \frac{1}{2}\left[\frac{1}{2}(2-x)e^{2x} + \frac{1}{4}e^{2x}\right]_{0}^{2}$ $M1 = \frac{1}{2}(2-x)e^{2x} + \frac{1}{4}e^{2x} = \frac{1}{2}\left[\frac{1}{2}(2-x)e^{2x} + \frac{1}{4}e^{2x}\right]_{0}^{2}$ $M1 = \frac{1}{2}(2-x)e^{2x} + \frac{1}{4}e^{2x} = \frac{1}{2}\left[\frac{1}{2}(2-x)e^{2x} + \frac{1}{4}e^{2x}\right]_{0}^{2}$ $M1 = \frac{1}{2}(2-x)e^{2x} + \frac{1}{4}e^{2x} = \frac{1}{2}\left[\frac{1}{2}(2-x)e^{2x} + \frac{1}{4}e^{2x}\right]_{0}^{2}$ $M1 = \frac{1}{2}(2-x)e^{2x} + \frac{1}{4}e^{2x} = \frac{1}{2}\left[\frac{1}{2}(2-x)e^{2x} + \frac{1}{4}e^{2x}\right]_{0}^{2}$ $M1 = \frac{1}{2}(2-x)e^{2x} + \frac{1}{4}e^{2x} = \frac{1}{2}\left[\frac{1}{2}(2-x)e^{2x} + \frac{1}{4}e^{2x}\right]_{0}^{2}$ $M1 = \frac{1}{2}(2-x)e^{2x} + \frac{1}{4}e^{2x} = \frac{1}{2}\left[\frac{1}{2}(2-x)e^{2x} + \frac{1}{4}e^{2x}\right]_{0}^{2}$ $M1 = \frac{1}{2}(2-x)e^{2x} + \frac{1}{4}e^{2x} = \frac{1}{2}\left[\frac{1}{2}(2-x)e^{2x} + \frac{1}{4}e^{2x}\right]_{0}^{2}$ $M1 = \frac{1}{2}(2-x)e^{2x} + \frac{1}{4}e^{2x} = \frac{1}{2}\left[\frac{1}{2}(2-x)e^{2x} + \frac{1}{4}e^{2x}\right]_{0}^{2}$ $M1 = \frac{1}{2}(2-x)e^{2x} + \frac{1}{4}e^{2x} = \frac{1}{2}\left[\frac{1}{2}(2-x)e^{2x} + \frac{1}{4}e^{2x}\right]_{0}^{2}$ $M1 = \frac{1}{2}\left[\frac{1}{2}(2-x)e^{2x} + \frac{1}{4}e^{2x}\right]_{0}^{2}$		$-\frac{1}{2}(2-r)e^{2x} - \int -\frac{1}{2}e^{2x} dr$	M1	3.1a
$\frac{2}{\left\{\operatorname{Area}(R) = \int_{0}^{2} (2-x)e^{2x} dx = \right\} \left[\frac{1}{2}(2-x)e^{2x} + \frac{1}{4}e^{2x}\right]_{0}^{2}} \qquad M1 \qquad 2.2a$ $= \left(0 + \frac{1}{4}e^{4}\right) - \left(\frac{1}{2}(2)e^{0} + \frac{1}{4}e^{0}\right) = \frac{1}{4}e^{4} - \frac{5}{4} \qquad A1 \qquad 2.1$		$\int_{2}^{2} \int_{2}^{2} \int_{2}^{2} \int_{1}^{2} \int_{2}^{2} \int_{1}^{2} \int_{1$	M1	1.1b
$= \left(0 + \frac{1}{4}e^{4}\right) - \left(\frac{1}{2}(2)e^{0} + \frac{1}{4}e^{0}\right) = \frac{1}{4}e^{4} - \frac{5}{4}$ A1 2.1 (5)		$= \frac{1}{2}(2-x)e^{2x} + \frac{1}{4}e^{2x}$	A1	1.1b
(5)		$\left\{\operatorname{Area}(R) = \int_{0}^{2} (2-x)e^{2x} dx = \right\} \left[\frac{1}{2}(2-x)e^{2x} + \frac{1}{4}e^{2x}\right]_{0}^{2}$	M1	2.2a
		$= \left(0 + \frac{1}{4}e^{4}\right) - \left(\frac{1}{2}(2)e^{0} + \frac{1}{4}e^{0}\right) = \frac{1}{4}e^{4} - \frac{5}{4}$	A1	2.1
(5 marks)			(5)	
			(5 n	narks)

Quest	ion 7 Notes:
M1:	Attempts to solve the problem by recognising the need to apply a method of integration by parts on either xe^{2x} or $(2-x)e^{2x}$. Allow this mark for either
	• $\pm x e^{2x} \rightarrow \pm \lambda x e^{2x} \pm \int \mu e^{2x} \{ dx \}$
	• $(2-x)e^{2x} \rightarrow \pm \lambda(2-x)e^{2x} \pm \int \mu e^{2x} \{dx\}$
	where $\lambda, \mu \neq 0$ are constants.
M1:	For either
	• $2e^{2x} - xe^{2x} \rightarrow e^{2x} \pm \frac{1}{2}xe^{2x} \pm \int \frac{1}{2}e^{2x} \{dx\}$
	• $(2-x)e^{2x} \rightarrow \pm \frac{1}{2}(2-x)e^{2x} \pm \int \frac{1}{2}e^{2x} \{dx\}$
A1:	Correct integration which can be simplified or un-simplified. E.g.
	• $2e^{2x} - xe^{2x} \rightarrow e^{2x} - \left(\frac{1}{2}xe^{2x} - \frac{1}{4}e^{2x}\right)$
	• $2e^{2x} - xe^{2x} \rightarrow e^{2x} - \frac{1}{2}xe^{2x} + \frac{1}{4}e^{2x}$
	• $2e^{2x} - xe^{2x} \to \frac{5}{4}e^{2x} - \frac{1}{2}xe^{2x}$
	• $(2-x)e^{2x} \rightarrow \frac{1}{2}(2-x)e^{2x} + \frac{1}{4}e^{2x}$
M1:	Deduces that the upper limit is 2 and uses limits of 2 and 0 on their integrated function
A1:	Correct proof leading to $pe^4 + q$, where $p = \frac{1}{4}$, $q = -\frac{5}{4}$

Questi	on Scheme	Marks	AOs
8 (a)	Total amount = $\frac{2100(1 - (1.012)^{14})}{1 - 1.012}$ or $\frac{2100((1.012)^{14} - 1)}{1.012 - 1}$	M1	3.1b
	$= 31806.9948 \dots = 31800 \text{ (tonnes)} (3 \text{ sf})$	A1	1.1b
		(2)	
	Total Cost = 5.15(2000(14)) + 6.45(31806.9948 (2000)(14))	M1	3.1b
	$10(a) \cos (-3.13(2000(14))) + 0.43(51000.7746 (2000)(14))$	M1	1.1b
	= 5.15(28000) + 6.45(3806.9948) = 144200 + 24555.116		
	$= 168755.116 = \pounds 169000$ (nearest £1000)	A1	3.2a
		(3)	
		(5 n	narks)
Questi	on 8 Notes:		
(a)			
M1:	Attempts to apply the correct geometric summation formula with either $n = 13$ or	n = 14,	
	a = 2100 and $r = 1.012$ (Condone $r = 1.12$)		
A1:	Correct answer of 31800 (tonnes)		
(b)			
M1:	Fully correct method to find the total cost		
M1:	For either		
	• $5.15(2000(14)) = 144200$		
	• $6.45("31806.9948" - (2000)(14)) = 24555.116 \}$		
	• $5.15(2000(13)) = 133900$		
	• $6.45("29354.73794" - (2000)(13)) = 21638.059 \}$		
A1:	Correct answer of £169000		
	Note: Using rounded answer in part (a) gives 168710 which becomes £169000 (r	earest £100	0)

Question	Scheme	Marks	AOs
9	Gradient of chord = $\frac{(2(x+h)^3 + 5) - (2x^3 + 5)}{x+h-h}$	B1	1.1b
	x+h-h	M1	2.1
	$(x+h)^3 = x^3 + 3x^2h + 3xh^2 + h^3$	B1	1.1b
	Gradient of chord = $\frac{(2(x^3 + 3x^2h + 3xh^2 + h^3) + 5) - (2x^3 + 5)}{1 + h - 1}$		
	$=\frac{2x^3+6x^2h+6xh^2+2h^3+5-2x^3-5}{1+h-1}$		
	$=\frac{6x^2h+6xh^2+2h^3}{h}$		
	$= 6x^2 + 6xh + 2h^2$	A1	1.1b
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \lim_{h \to 0} \left(6x^2 + 6xh + 2h^2 \right) = 6x^2 \text{ and so at } P, \frac{\mathrm{d}y}{\mathrm{d}x} = 6(1)^2 = 6$	A1	2.2a
		(5)	
9	Let a point Q have x coordinate $1 + h$, so $y_Q = 2(1+h)^3 + 5$	B1	1.1b
Alt 1	$\{P(1,7), Q(1+h, 2(1+h)^3+3) \Rightarrow\}$		
	Gradient $PQ = \frac{2(1+h)^3 + 5 - 7}{1+h-1}$	M1	2.1
	$(1+h)^3 = 1 + 3h + 3h^2 + h^3$	B1	1.1b
	Gradient $PQ = \frac{2(1+3h+3h^2+h^3)+5-7}{1+h-1}$		
	$=\frac{2+6h+6h^2+2h^3+5-7}{1+h-1}$		
	$=\frac{6h+6h^2+2h^3}{h}$		
	$= 6 + 6h + 2h^2$	A1	1.1b
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \lim_{h \to 0} \left(6 + 6h + 2h^2 \right) = 6$	A1	2.2a
		(5)	
	(5 marks)		

Quest	Question 9 Notes:	
B1:	$2(x + h)^3 + 5$, seen or implied	
M1:	Begins the proof by attempting to write the gradient of the chord in terms of x and h	
B1:	$(x + h)^3 \rightarrow x^3 + 3x^2h + 3xh^2 + h^3$, by expanding brackets or by using a correct binomial expansion	
M1:	Correct process to obtain the gradient of the chord as $\alpha x^2 + \beta xh + \gamma h^2$, $\alpha, \beta, \gamma \neq 0$	
A1:	Correctly shows that the gradient of the chord is $6x^2 + 6xh + 2h^2$ and applies a limiting argument to	
	deduce when $y = 2x^3 + 5$, $\frac{dy}{dx} = 6x^2$. E.g. $\lim_{h \to 0} (6x^2 + 6xh + 2h^2) = 6x^2$. Finally, deduces that	
	at the point <i>P</i> , $\frac{dy}{dx} = 6$.	
	Note: δx can be used in place of h	
Alt 1		
B1:	Writes down the <i>y</i> coordinate of a point close to <i>P</i> .	
	E.g. For a point <i>Q</i> with $x = 1 + h$, $\{y_Q\} = 2(1 + h)^3 + 5$	
M1:	Begins the proof by attempting to write the gradient of the chord PQ in terms of h	
B1:	$(1+h)^3 \rightarrow 1+3h+3h^2+h^3$, by expanding brackets or by using a correct binomial expansion	
M1:	Correct process to obtain the gradient of the chord PQ as $\alpha + \beta h + \gamma h^2$, $\alpha, \beta, \gamma \neq 0$	
A1:	Correctly shows that the gradient of PQ is $6 + 6h + 2h^2$ and applies a limiting argument to deduce	
	that at the point P on $y = 2x^3 + 5$, $\frac{dy}{dx} = 6$. E.g. $\lim_{h \to 0} (6 + 6h + 2h^2) = 6$	
	Note: For Alt 1, δx can be used in place of h	

Question	Scheme	Marks	AOs
10 (a)	$y = \frac{3x-5}{x+1} \Rightarrow y(x+1) = 3x-5 \Rightarrow xy+y = 3x-5 \Rightarrow y+5 = 3x-xy$	M1	1.1b
	$\Rightarrow y+5=x(3-y) \Rightarrow \frac{y+5}{3-y}=x$	M1	2.1
	Hence $f^{-1}(x) = \frac{x+5}{3-x}, x \in \mathbb{R}, x \neq 3$	A1	2.5
		(3)	
(b)	$\mathrm{ff}(x) = \frac{3\left(\frac{3x-5}{x+1}\right)-5}{\left(\frac{3x-5}{x+1}\right)+1}$	M1	1.1a
	3(3x-5) - 5(x+1) x+1	M1	1.1b
	$=\frac{x+1}{\frac{(3x-5)+(x+1)}{x+1}}$	A1	1.1b
	$= \frac{9x - 15 - 5x - 5}{3x - 5 + x + 1} = \frac{4x - 20}{4x - 4} = \frac{x - 5}{x - 1} (\text{note that } a = -5)$	A1	2.1
		(4)	
(c)	$fg(2) = f(4-6) = f(-2) = \frac{3(-2)-5}{2+1} = 11$	M1	1.1b
	$rg(2) = r(4-6) = r(-2) = \frac{-2+1}{-2+1}$, -11	A1	1.1b
		(2)	
(d)	$g(x) = x^2 - 3x = (x - 1.5)^2 - 2.25$. Hence $g_{\min} = -2.25$	M1	2.1
	Either $g_{min} = -2.25$ or $g(x) \ge -2.25$ or $g(5) = 25 - 15 = 10$	B1	1.1b
	$-2.25 \le g(x) \le 10$ or $-2.25 \le y \le 10$	A1	1.1b
		(3)	
(e)	 E.g. the function g is many-one the function g is not one-one the inverse is one-many g(0) = g(3) = 0 	B1	2.4
		(1)	
	(13 marks)		narks)

Quest	ion 10 Notes:
(a)	
M1:	Attempts to find the inverse by cross-multiplying and an attempt to collect all the <i>x</i> -terms (or swapped <i>y</i> -terms) onto one side
M1:	A fully correct method to find the inverse
A1:	A correct $f^{-1}(x) = \frac{x+5}{3-x}$, $x \in \mathbb{R}$, $x \neq 3$, expressed fully in function notation (including the domain)
(b)	
M1:	Attempts to substitute $f(x) = \frac{3x-5}{x+1}$ into $\frac{3f(x)-5}{f(x)+1}$
M1:	Applies a method of "rationalising the denominator" for both their numerator and their denominator.
A1:	3(3x-5)-5(x+1)
	$\frac{x+1}{(3x-5)+(x+1)}$ which can be simplified or un-simplified x+1
A1:	Shows $ff(x) = \frac{x+a}{x-1}$ where $a = -5$ or $ff(x) = \frac{x-5}{x-1}$, with no errors seen.
(c)	
M1:	Attempts to substitute the result of $g(2)$ into f
A1:	Correctly obtains $fg(2) = 11$
(d)	
M1:	Full method to establish the minimum of g.
	E.g.
	• $(x \pm \alpha)^2 + \beta$ leading to $g_{\min} = \beta$
	• Finds the value of x for which $g'(x) = 0$ and inserts this value of x back into $g(x)$ in order
	to find to $ g_{ m min}^{} $
B1:	For either
	• finding the correct minimum value of g
	(Can be implied by $g(x) \ge -2.25$ or $g(x) > -2.25$)
	• stating $g(5) = 25 - 15 = 10$
A1:	States the correct range for g. E.g. $-2.25 \le g(x) \le 10$ or $-2.25 \le y \le 10$
(e)	
B1:	See scheme

Question	Scheme	Marks	AOs
11 (a)	$f'(x) = k - 4x - 3x^2$		
	f''(x) = -4 - 6x = 0	M1	1.1b
	<u>Criteria 1</u> Either		
	$f''(x) = -4 - 6x = 0 \implies x = \frac{4}{-6} \implies x = -\frac{2}{3}$		
	or $f''\left(-\frac{2}{3}\right) = -4 - 6\left(-\frac{2}{3}\right) = 0$		
	<u>Criteria 2</u> Either		
	• $f''(-0.7) = -4 - 6(-0.7) = 0.2 > 0$ f''(-0.6) = -4 - 6(-0.6) = -0.4 < 0		
	or		
	• $f'''\left(-\frac{2}{3}\right) = -6 \neq 0$		
	At least one of Criteria 1 or Criteria 2	B1	2.4
	Both Criteria 1 and Criteria 2		
	and concludes <i>C</i> has a point of inflection at $x = -\frac{2}{3}$	A1	2.1
		(3)	
(b)	$f'(x) = k - 4x - 3x^2, AB = 4\sqrt{2}$		
	$f(x) = kx - 2x^2 - x^3 \{+c\}$	M1	1.1b
		A1	1.1b
	$f(0) = 0 \text{ or } (0,0) \Rightarrow c = 0 \Rightarrow f(x) = kx - 2x^2 - x^3$ $\left\{ f(x) = 0 \Rightarrow \right\} f(x) = x(k - 2x - x^2) = 0 \Rightarrow \left\{ x = 0, \right\} k - 2x - x^2 = 0$	A1	2.2a
	$\left\{x^{2} + 2x - k = 0\right\} \Rightarrow (x + 1)^{2} - 1 - k = 0, x = \dots$	M1	2.1
	$\Rightarrow x = -1 \pm \sqrt{k+1}$	A1	1.1b
	$AB = \left(-1 + \sqrt{k+1}\right) - \left(-1 - \sqrt{k+1}\right) = 4\sqrt{2} \implies k = \dots$	M1	2.1
	So, $2\sqrt{k+1} = 4\sqrt{2} \implies k = 7$	A1	1.1b
	· · ·	(7)	
			marks)

Quest	ion 11 Notes:
(a)	
M1:	E.g.
	• attempts to find $f''\left(-\frac{2}{3}\right)$
	• finds f''(x) and sets the result equal to 0
B1:	See scheme
A1:	See scheme
(b)	
M1:	Integrates $f'(x)$ to give $f(x) = \pm kx \pm \alpha x^2 \pm \beta x^3$, $\alpha, \beta \neq 0$ with or without the constant of integration
A1:	$f(x) = kx - 2x^2 - x^3$, with or without the constant of integration
A1:	Finds $f(x) = kx - 2x^2 - x^3 + c$, and makes some reference to $y = f(x)$ passing through the origin
	to deduce $c = 0$. Proceeds to produce the result $k - 2x - x^2 = 0$ or $x^2 + 2x - k = 0$
M1:	Uses a valid method to solve the quadratic equation to give x in terms of k
A1	Correct roots for x in terms of k. i.e. $x = -1 \pm \sqrt{k+1}$
M1:	Applies $AB = 4\sqrt{2}$ on $x = -1 \pm \sqrt{k+1}$ in a complete method to find $k =$
A1:	Finds $k = 7$ from correct solution only

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Question	Scheme	Marks	AOs
and progresses as far as achieving $\int \dots (u-1) \frac{1}{u} \dots M1$ $3.1a$ $u = 1 + \cos\theta \Rightarrow \frac{du}{d\theta} = -\sin\theta \text{ and } \sin 2\theta = 2\sin\theta\cos\theta$ $M1$ $1.1b$ $\begin{cases} \int \frac{\sin 2\theta}{1 + \cos\theta} d\theta = \frac{1}{2} \int \frac{2\sin\theta\cos\theta}{1 + \cos\theta} d\theta = \int \frac{-2(u-1)}{u} du$ $A1$ 2.1 $-2\int \left(1 - \frac{1}{u}\right) du = -2(u - \ln u)$ $M1$ $1.1b$ $\begin{cases} \int \frac{s}{u} \frac{\sin 2\theta}{1 + \cos\theta} d\theta = \frac{1}{2} = -2\left[u - \ln u\right]_{u}^{\frac{1}{2}} = -2((1 - \ln 1) - (2 - \ln 2))$ $M1$ $1.1b$ $= -2(-1 + \ln 2) = 2 - 2\ln 2 *$ $A1 * 2.1$ (7) $Attempts this question by applying the substitution u = \cos\theta and progresses as far as achieving \int \dots \frac{u}{u+1} \dots M1 3.1a u = \cos\theta \Rightarrow \frac{du}{d\theta} = -\sin\theta and \sin 2\theta = 2\sin\theta\cos\theta M1 1.1b \begin{cases} \int \frac{\sin 2\theta}{1 + \cos\theta} d\theta = \frac{1}{2} \int \frac{2\sin\theta\cos\theta}{1 + \cos\theta} d\theta = \int \frac{-2u}{u+1} du A1 2.1 \begin{cases} \int \frac{\sin 2\theta}{1 + \cos\theta} d\theta = \frac{1}{2} \int 2\sin\theta\cos\theta} d\theta = \int \frac{-2u}{u+1} du A1 2.1 \begin{cases} \int \frac{\sin 2\theta}{1 + \cos\theta} d\theta = \frac{1}{2} \int 2 -2\left[u - \ln(u+1)\right]_{1}^{\theta} = -2((0 - \ln 1) - (1 - \ln 2)) M1 1.1b = -2(-1 + \ln 2) = 2 - 2\ln 2 * A1 * 2.1 (7) M1 1.1b (1 - 1) \int \frac{1}{u+1} du = -2 \int 1 - \frac{1}{u+1} du = -2((0 - \ln 1) - (1 - \ln 2)) M1 1.1b (1 - 1) \int \frac{1}{u+1} du = -2(1 - \ln(u+1)) \int \frac{1}{u} = -2((0 - \ln 1) - (1 - \ln 2)) M1 1.1b (1 - 1) \int \frac{1}{u+1} du = -2(1 - \ln(u+1)) \int \frac{1}{u} = -2((0 - \ln 1) - (1 - \ln 2)) M1 1.1b (1 - 1) \int \frac{1}{u+1} du = -2(1 - \ln(u+1)) \int \frac{1}{u} = -2((0 - \ln 1) - (1 - \ln 2)) M1 1.1b (1 - 1) \int \frac{1}{u+1} du = -2(1 - \ln(u+1)) \int \frac{1}{u} = -2(1 - \ln(u+1)) (1 - 1) \int \frac{1}{u+1} du = -2(1 - 1 + \ln 2) = 2 - 2\ln 2 * (1 - 1) \int \frac{1}{u+1} du = -2(1 - 1 + \ln 2) = 2 - 2\ln 2 * (1 - 1) \int \frac{1}{u+1} du = -2(1 - 1 + \ln 2) = 2 - 2\ln 2 * (1 - 1) \int \frac{1}{u+1} du = -2(1 - 1 + \ln 2) = 2 - 2\ln 2 * (1 - 1) \int \frac{1}{u+1} du = -2(1 - 1 + \ln 2) = 2 - 2\ln 2 * (1 - 1) \int \frac{1}{u+1} du = -2(1 - 1 + \ln 2) = 2 - 2\ln 2 * (1 - 1) \int \frac{1}{u+1} du = -2(1 - 1 + \ln 2) = 2 - 2\ln 2 * (1 - 1) \int \frac{1}{u+1} du = -2(1 - 1 + \ln 2) = 2 - 2\ln 2 * (1 - 1) \int \frac{1}{u+1} du = -2(1 - 1 + \ln 2) = 2 - 2\ln 2 * (1 - 1) \int \frac{1}{u+1} du = -2(1 - 1 + \ln 2) = 2 - 2\ln 2 * (1 - 1) \int \frac{1}{u+1} du = -2(1 - 1 + \ln 2) = 2 - 2\ln 2 * (1 - 1) \int \frac{1}{u+1} du = -2(1 - 1 + \ln 2) = 2 - 2\ln $	12	$\int_0^{\frac{\pi}{2}} \frac{\sin 2\theta}{1+\cos\theta} \mathrm{d}\theta$		
$ \frac{u = 1 + \cos\theta \Rightarrow \frac{du}{d\theta} = -\sin\theta \text{ and } \sin 2\theta = 2\sin\theta\cos\theta}{\left\{\int \frac{\sin 2\theta}{1 + \cos\theta} d\theta = \right\} \int \frac{2\sin\theta\cos\theta}{1 + \cos\theta} d\theta = \int \frac{-2(u-1)}{u} du}{1 + \cos\theta} du} \qquad A1 \qquad 2.1 $ $ \frac{\left\{\int \frac{\sin 2\theta}{1 + \cos\theta} d\theta = \right\} \int \frac{2\sin\theta\cos\theta}{1 + \cos\theta} d\theta = \int \frac{-2(u-1)}{u} du}{1 + 1.1b} \frac{A1}{1.1b} = \frac{-2\int \left(1 - \frac{1}{u}\right) du}{1 + \cos\theta} d\theta = \frac{1}{2} = -2\left[(1 - \ln 1) - (2 - \ln 2)\right]}{1 + \cos\theta} \frac{M1}{1.1b} = -2\left[(1 - \ln 2) = 2 - 2\ln 2 * A1 * 2.1\right]}{(7)} $ $ \frac{12}{\text{Attempts this question by applying the substitution } u = \cos\theta}{u} \frac{M1}{d\theta} = -\sin\theta \text{ and } \sin 2\theta = 2\sin\theta\cos\theta} \frac{M1}{u+1} \frac{3.1a}{1.1b} \frac{1}{2} = -2\int \frac{1}{u+1} du \frac{1}{2} = -2\int \frac{1}{u+1} du}{1 + \cos\theta} d\theta = \frac{1}{2} - \frac{2u}{u} du} \frac{A1}{2.1} \frac{2.1}{1 + \cos\theta} \frac{1}{u} \frac{1}{1 + \cos\theta} d\theta = \frac{1}{2} - \frac{2u}{u+1} du}{1 + 1} \frac{A1}{1.1b} \frac{1}{1.1b} \frac{1}{1.1b} \frac{1}{1.1b} \frac{1}{1 + \cos\theta} d\theta = \frac{1}{2} - 2\int 1 - \frac{1}{u+1} du \frac{1}{2} = -2(u - \ln(u+1)) \frac{M1}{1.1b} \frac{1}{1.1b} \frac{1}{1.1b} \frac{1}{1 + \cos\theta} d\theta = \frac{1}{2} - 2\left[(u - \ln(u+1))\right]_{1}^{0} = -2((0 - \ln 1) - (1 - \ln 2))}{1 + \cos\theta} \frac{M1}{u} \frac{1.1b}{1.1b} \frac{1}{1.1b} \frac{1}{1.1b} \frac{1}{1 + \cos\theta} d\theta = \frac{1}{2} - 2\left[(u - \ln(u+1))\right]_{1}^{0} = -2((0 - \ln 1) - (1 - \ln 2))}{1 + \cos\theta} \frac{1}{u} \frac$		Attempts this question by applying the substitution $u = 1 + \cos \theta$		
$ \begin{cases} \int \frac{\sin 2\theta}{1 + \cos \theta} d\theta = \int \int \frac{2\sin \theta \cos \theta}{1 + \cos \theta} d\theta = \int \frac{-2(u-1)}{u} du & A1 & 2.1 \\ -2\int \left(1 - \frac{1}{u}\right) du = -2(u - \ln u) & \frac{M1}{1.1b} \\ \int \int_{0}^{\frac{\pi}{2}} \frac{\sin 2\theta}{1 + \cos \theta} d\theta = \int = -2\left[u - \ln u\right]_{2}^{1} = -2((1 - \ln 1) - (2 - \ln 2)) & M1 & 1.1b \\ = -2(-1 + \ln 2) = 2 - 2\ln 2 * & A1* & 2.1 \\ \end{cases} $ Attempts this question by applying the substitution $u = \cos \theta$ and progresses as far as achieving $\int \dots \frac{u}{u+1} \dots & M1 & 1.1b \\ I & U = \cos \theta \Rightarrow \frac{du}{d\theta} = -\sin \theta$ and $\sin 2\theta = 2\sin \theta \cos \theta & M1 & 1.1b \\ \begin{cases}\int \frac{\sin 2\theta}{1 + \cos \theta} d\theta = \int \int \frac{2\sin \theta \cos \theta}{1 + \cos \theta} d\theta = \int \frac{-2u}{u+1} du & A1 & 2.1 \\ \begin{cases}\int \frac{\sin 2\theta}{1 + \cos \theta} d\theta = \int \int \frac{2\sin \theta \cos \theta}{1 + \cos \theta} d\theta = \int \frac{-2u}{u+1} du & A1 & 2.1 \\ \begin{cases}\int \frac{\sin 2\theta}{1 + \cos \theta} d\theta = \int \int \frac{2\sin \theta \cos \theta}{1 + \cos \theta} d\theta = \int \frac{-2(u - \ln(u+1))}{u+1} & M1 & 1.1b \\ \end{cases} $ $\begin{cases}\int \frac{\pi}{2} \frac{\sin 2\theta}{1 + \cos \theta} d\theta = \int = -2\left[u - \ln(u+1)\right]_{1}^{0} = -2((0 - \ln 1) - (1 - \ln 2)) & M1 & 1.1b \\ \end{bmatrix} $ $f(0) = -2(-1 + \ln 2) = 2 - 2\ln 2 * & A1* & 2.1 \\ \end{cases} $		and progresses as far as achieving $\int \frac{(u-1)}{u}$	M1	3.1a
$ \frac{\left[\begin{array}{c} \mathbf{u} & \mathbf{u} \right] \mathbf{u} & \mathbf{u} & \mathbf{u} \\ -2 \int \left(1 - \frac{1}{u} \right) du = -2(u - \ln u) \\ \hline \mathbf{M1} & 1.1b \\ \hline \mathbf{M1} & \mathbf{M1} & 1.1b \\ \hline \mathbf{M1} & \mathbf{M1} & \mathbf{M1} & \mathbf{M1} \\ \hline \mathbf{M1} & \mathbf{M1} & \mathbf{M1} & \mathbf{M1} \\ \hline \mathbf{M1} & \mathbf{M1} & \mathbf{M1} & \mathbf{M1} \\ \hline \mathbf{M1} & \mathbf{M1} & \mathbf{M1} & \mathbf{M1} \\ \hline \mathbf{M1} & \mathbf{M1} & \mathbf{M1} & \mathbf{M1} \\ \hline \mathbf{M1} & \mathbf{M1} & \mathbf{M1} & \mathbf{M1} \\ \hline \mathbf{M1} & \mathbf{M1} & \mathbf{M1} & \mathbf{M1} \\ \hline \mathbf{M1} & \mathbf{M1} & \mathbf{M1} & \mathbf{M1} \\ \hline \left\{ \int \frac{\sin 2\theta}{1 + \cos \theta} d\theta = \right\} \int \frac{2\sin \theta \cos \theta}{1 + \cos \theta} d\theta = \int \frac{-2u}{u + 1} du \\ \hline \left\{ -2\int \frac{(u + 1) - 1}{u + 1} du = -2\int 1 - \frac{1}{u + 1} du \\ \hline \left\{ -2\int \frac{(u + 1) - 1}{u + 1} du = -2\int 1 - \frac{1}{u + 1} du \\ \hline \left\{ \int_{0}^{\frac{\pi}{2}} \frac{\sin 2\theta}{1 + \cos \theta} d\theta = \right\} = -2\left[u - \ln(u + 1) \right]_{1}^{0} = -2((u - \ln(u + 1))) \\ \hline \mathbf{M1} & \mathbf{M1} \\ \hline \mathbf{M1} \\ \hline \mathbf{M1} & \mathbf{M1} \\ \hline \mathbf{M1} & \mathbf{M1} \\ \hline $		$u = 1 + \cos\theta \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}\theta} = -\sin\theta$ and $\sin 2\theta = 2\sin\theta\cos\theta$	M1	1.1b
$\frac{-2 \int \left[1 - \frac{1}{u}\right] du = -2(u - \ln u)}{M1} \qquad M1 \qquad 1.1b$ $\frac{\left\{\int_{0}^{\frac{\pi}{2}} \frac{\sin 2\theta}{1 + \cos \theta} d\theta = \right\} = -2 \left[u - \ln u\right]_{2}^{1} = -2((1 - \ln 1) - (2 - \ln 2))}{M1} \qquad M1 \qquad 1.1b$ $= -2(-1 + \ln 2) = 2 - 2\ln 2 * \qquad A1 * \qquad 2.1$ (7) 12 Attempts this question by applying the substitution $u = \cos \theta$ and progresses as far as achieving $\int \frac{u}{u + 1}$ $u = \cos \theta \Rightarrow \frac{du}{d\theta} = -\sin \theta$ and $\sin 2\theta = 2\sin \theta \cos \theta$ $M1 \qquad 1.1b$ $\frac{\left\{\int \frac{\sin 2\theta}{1 + \cos \theta} d\theta = \right\} \int \frac{2\sin \theta \cos \theta}{1 + \cos \theta} d\theta = \int \frac{-2u}{u + 1} du}{1 + \cos \theta} \qquad A1 \qquad 2.1$ $\frac{\left\{= -2 \int \frac{(u + 1) - 1}{u + 1} du = -2 \int 1 - \frac{1}{u + 1} du \right\} = -2(u - \ln(u + 1))}{\left\{\int_{0}^{\frac{\pi}{2}} \frac{\sin 2\theta}{1 + \cos \theta} d\theta = \right\} = -2[u - \ln(u + 1)]_{1}^{0} = -2((0 - \ln 1) - (1 - \ln 2))}$ $M1 \qquad 1.1b$ $\frac{\left\{\int_{0}^{\frac{\pi}{2}} \frac{\sin 2\theta}{1 + \cos \theta} d\theta = \right\} = -2[u - \ln(u + 1)]_{1}^{0} = -2((0 - \ln 1) - (1 - \ln 2))}$ $M1 \qquad 1.1b$		$\left\{\int \frac{\sin 2\theta}{1+\cos \theta} \mathrm{d}\theta = \right\} \int \frac{2\sin \theta \cos \theta}{1+\cos \theta} \mathrm{d}\theta = \int \frac{-2(u-1)}{u} \mathrm{d}u$	A1	2.1
$ \frac{\left\{ \int_{0}^{\frac{\pi}{2}} \frac{\sin 2\theta}{1 + \cos \theta} d\theta = \right\} = -2\left[u - \ln u \right]_{2}^{1} = -2((1 - \ln 1) - (2 - \ln 2)) M1 1.1b \\ = -2(-1 + \ln 2) = 2 - 2\ln 2 * A1^{*} 2.1 \\ (7) $ 12 Attempts this question by applying the substitution $u = \cos \theta$ and progresses as far as achieving $\int \dots \frac{u}{u+1} \dots$ $u = \cos \theta \Rightarrow \frac{du}{d\theta} = -\sin \theta$ and $\sin 2\theta = 2\sin \theta \cos \theta M1 1.1b \\ \left\{ \int \frac{\sin 2\theta}{1 + \cos \theta} d\theta = \right\} \int \frac{2\sin \theta \cos \theta}{1 + \cos \theta} d\theta = \int \frac{-2u}{u+1} du A1 2.1 \\ \left\{ = -2\int \frac{(u+1)-1}{u+1} du = -2\int 1 - \frac{1}{u+1} du \right\} = -2(u - \ln(u+1)) \frac{M1 1.1b}{M1 1.1b} \\ \left\{ \int_{0}^{\frac{\pi}{2}} \frac{\sin 2\theta}{1 + \cos \theta} d\theta = \right\} = -2\left[u - \ln(u+1) \right]_{1}^{\theta} = -2((0 - \ln 1) - (1 - \ln 2)) M1 1.1b \\ = -2(-1 + \ln 2) = 2 - 2\ln 2 * A1^{*} 2.1 \\ $		$2\int \left(1 - \frac{1}{2}\right) du = 2(u - hu)$	M1	1.1b
$\frac{1}{12}$ Attempts this question by applying the substitution $u = \cos\theta$ and progresses as far as achieving $\int \dots \frac{u}{u+1} \dots$ $\frac{12}{11}$ Attempts this question by applying the substitution $u = \cos\theta$ and progresses as far as achieving $\int \dots \frac{u}{u+1} \dots$ $\frac{12}{u+1}$ $\frac{12}{u} = \cos\theta \Rightarrow \frac{du}{d\theta} = -\sin\theta$ and $\sin 2\theta = 2\sin\theta\cos\theta$ $\frac{11}{1} \dots$ $\frac{11}{1} \frac{11}{1} $		$-2\int \left(1-\frac{1}{u}\right) du = -2(u-mu)$	M1	1.1b
$\frac{1}{12}$ Attempts this question by applying the substitution $u = \cos\theta$ and progresses as far as achieving $\int \dots \frac{u}{u+1} \dots$ $\frac{1}{12}$ Alt 1 Attempts this question by applying the substitution $u = \cos\theta$ and progresses as far as achieving $\int \dots \frac{u}{u+1} \dots$ $\frac{1}{u+1} \dots$ $\frac{1}{11}$ $\frac{1}{11} = \cos\theta \Rightarrow \frac{du}{d\theta} = -\sin\theta \text{ and } \sin 2\theta = 2\sin\theta\cos\theta$ M1 1.1b $\frac{1}{11} = \frac{1}{1+\cos\theta} d\theta = \int \int \frac{2\sin\theta\cos\theta}{1+\cos\theta} d\theta = \int \frac{-2u}{u+1} du$ A1 2.1 $\frac{1}{11} = \frac{1}{1+\cos\theta} d\theta = \int \int \frac{2\sin\theta\cos\theta}{1+\cos\theta} d\theta = \int \frac{-2u}{u+1} du$ A1 2.1 $\frac{1}{11} = \frac{1}{1+\cos\theta} d\theta = \int \frac{1}{1+\cos\theta} d\theta = \int \frac{-2(u-\ln(u+1))}{1+1} \frac{1}{11} + 1$		$\left\{\int_{0}^{\frac{\pi}{2}}\frac{\sin 2\theta}{1+\cos \theta} \mathrm{d}\theta = \right\} = -2\left[u-\ln u\right]_{2}^{1} = -2((1-\ln 1)-(2-\ln 2))$	M1	1.1b
12 Alt 1Attempts this question by applying the substitution $u = \cos\theta$ and progresses as far as achieving $\int \dots \frac{u}{u+1} \dots$ M13.1a $u = \cos\theta \Rightarrow \frac{du}{d\theta} = -\sin\theta$ and $\sin 2\theta = 2\sin\theta\cos\theta$ M11.1b $\left\{\int \frac{\sin 2\theta}{1 + \cos\theta} d\theta = \right\} \int \frac{2\sin\theta\cos\theta}{1 + \cos\theta} d\theta = \int \frac{-2u}{u+1} du$ A12.1 $\left\{=-2\int \frac{(u+1)-1}{u+1} du = -2\int 1 - \frac{1}{u+1} du\right\} = -2(u - \ln(u+1))$ M11.1b $\left\{\int_{0}^{\frac{\pi}{2}} \frac{\sin 2\theta}{1 + \cos\theta} d\theta = \right\} = -2\left[u - \ln(u+1)\right]_{1}^{0} = -2((0 - \ln 1) - (1 - \ln 2))$ M11.1b $\left\{\int_{0}^{\frac{\pi}{2}} \frac{\sin 2\theta}{1 + \cos\theta} d\theta = \right\} = -2\left[u - \ln(u+1)\right]_{1}^{0} = -2((0 - \ln 1) - (1 - \ln 2))$ M11.1b $\left\{\int_{0}^{\frac{\pi}{2}} \frac{\sin 2\theta}{1 + \cos\theta} d\theta = \right\} = -2\left[u - \ln(u+1)\right]_{1}^{0} = -2((0 - \ln 1) - (1 - \ln 2))$ M11.1b $\left\{\int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \cos\theta} d\theta = \right\} = -2\left[u - \ln(u+1)\right]_{1}^{0} = -2((0 - \ln 1) - (1 - \ln 2))$ M11.1b $\left\{\int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \cos\theta} d\theta = \right\} = -2\left[u - \ln(u+1)\right]_{1}^{0} = -2((0 - \ln 1) - (1 - \ln 2))$ M12.1		$= -2(-1 + \ln 2) = 2 - 2\ln 2 *$	A1*	2.1
12 Alt 1Attempts this question by applying the substitution $u = \cos\theta$ and progresses as far as achieving $\int \dots \frac{u}{u+1} \dots$ M13.1a $u = \cos\theta \Rightarrow \frac{du}{d\theta} = -\sin\theta$ and $\sin 2\theta = 2\sin\theta\cos\theta$ M11.1b $\left\{\int \frac{\sin 2\theta}{1 + \cos\theta} d\theta = \right\} \int \frac{2\sin\theta\cos\theta}{1 + \cos\theta} d\theta = \int \frac{-2u}{u+1} du$ A12.1 $\left\{=-2\int \frac{(u+1)-1}{u+1} du = -2\int 1 - \frac{1}{u+1} du\right\} = -2(u - \ln(u+1))$ M11.1b $\left\{\int_{0}^{\frac{\pi}{2}} \frac{\sin 2\theta}{1 + \cos\theta} d\theta = \right\} = -2\left[u - \ln(u+1)\right]_{1}^{0} = -2((0 - \ln 1) - (1 - \ln 2))$ M11.1b $\left\{\int_{0}^{\frac{\pi}{2}} \frac{\sin 2\theta}{1 + \cos\theta} d\theta = \right\} = -2\left[u - \ln(u+1)\right]_{1}^{0} = -2((0 - \ln 1) - (1 - \ln 2))$ M11.1b $\left\{\int_{0}^{\frac{\pi}{2}} \frac{\sin 2\theta}{1 + \cos\theta} d\theta = \right\} = -2\left[u - \ln(u+1)\right]_{1}^{0} = -2((0 - \ln 1) - (1 - \ln 2))$ M11.1b $\left\{\int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \cos\theta} d\theta = \right\} = -2\left[u - \ln(u+1)\right]_{1}^{0} = -2((0 - \ln 1) - (1 - \ln 2))$ M11.1b $\left\{\int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \cos\theta} d\theta = \right\} = -2\left[u - \ln(u+1)\right]_{1}^{0} = -2((0 - \ln 1) - (1 - \ln 2))$ M12.1			(7)	
Alt 1 and progresses as far as achieving $\int \dots \frac{u}{u+1} \dots$ $u = \cos\theta \Rightarrow \frac{du}{d\theta} = -\sin\theta$ and $\sin 2\theta = 2\sin\theta\cos\theta$ $\int \frac{\sin 2\theta}{1+\cos\theta} d\theta = \int \frac{2\sin\theta\cos\theta}{1+\cos\theta} d\theta = \int \frac{-2u}{u+1} du$ $\int \left\{ = -2\int \frac{(u+1)-1}{u+1} du = -2\int 1 - \frac{1}{u+1} du \right\} = -2(u - \ln(u+1))$ $\int \int_{0}^{\frac{\pi}{2}} \frac{\sin 2\theta}{1+\cos\theta} d\theta = \int = -2\left[u - \ln(u+1)\right]_{1}^{0} = -2((0 - \ln 1) - (1 - \ln 2))$ $\int (1 - \ln 2) + \ln 2 + $	12	Attempts this question by applying the substitution $u = \cos \theta$		
$\begin{cases} \int \frac{\sin 2\theta}{1 + \cos \theta} d\theta = \begin{cases} \int \frac{2\sin \theta \cos \theta}{1 + \cos \theta} d\theta = \int \frac{-2u}{u+1} du & A1 & 2.1 \\ \begin{cases} = -2\int \frac{(u+1)-1}{u+1} du = -2\int 1 - \frac{1}{u+1} du \\ = -2\int \frac{1}{u+1} du = -2\int 1 - \frac{1}{u+1} du \\ = -2(u - \ln(u+1)) & M1 & 1.1b \\ \hline M1 & 1.1b \\ \hline M1 & 1.1b \\ \end{cases}$ $\begin{cases} \int_{0}^{\frac{\pi}{2}} \frac{\sin 2\theta}{1 + \cos \theta} d\theta = \\ = -2\left[u - \ln(u+1)\right]_{1}^{0} = -2((0 - \ln 1) - (1 - \ln 2)) & M1 & 1.1b \\ \hline M1 &$		and progresses as far as achieving $\int \dots \frac{u}{u+1} \dots$	M1	3.1a
$\begin{cases} = -2\int \frac{(u+1)-1}{u+1} du = -2\int 1 - \frac{1}{u+1} du \\ = -2(u-\ln(u+1)) & M1 & 1.1b \\ M1 & 1.1b \\ \end{bmatrix} \\ \begin{cases} \int_{0}^{\frac{\pi}{2}} \frac{\sin 2\theta}{1+\cos \theta} d\theta = \\ = -2\left[u-\ln(u+1)\right]_{1}^{0} = -2((0-\ln 1)-(1-\ln 2)) & M1 & 1.1b \\ \end{bmatrix} \\ = -2(-1+\ln 2) = 2-2\ln 2 * & A1* & 2.1 \\ \end{cases}$		$u = \cos\theta \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}\theta} = -\sin\theta$ and $\sin 2\theta = 2\sin\theta\cos\theta$	M1	1.1b
$\begin{cases} \int_{0}^{\frac{\pi}{2}} \frac{\sin 2\theta}{1 + \cos \theta} d\theta = \\ = -2 \Big[u - \ln(u+1) \Big]_{1}^{0} = -2((0 - \ln 1) - (1 - \ln 2)) & M1 \\ = -2(-1 + \ln 2) = 2 - 2\ln 2 * & A1* \\ 2.1 \\ \hline \end{array} $		$\left\{\int \frac{\sin 2\theta}{1+\cos \theta} \mathrm{d}\theta = \right\} \int \frac{2\sin \theta \cos \theta}{1+\cos \theta} \mathrm{d}\theta = \int \frac{-2u}{u+1} \mathrm{d}u$	A1	2.1
$\begin{cases} \int_{0}^{\frac{\pi}{2}} \frac{\sin 2\theta}{1 + \cos \theta} d\theta = \\ = -2 \Big[u - \ln(u+1) \Big]_{1}^{0} = -2((0 - \ln 1) - (1 - \ln 2)) & M1 \\ = -2(-1 + \ln 2) = 2 - 2\ln 2 * & A1* \\ 2.1 \\ \hline \end{array} $		$\int 2 \int (u+1) - 1 + 2 \int 1 + 1 + 2 \int 2 (u-1) (u-1)$	M1	1.1b
$= -2(-1 + \ln 2) = 2 - 2\ln 2 * $ A1* 2.1 (7)		$\left\{ \underbrace{=}^{-2} \int \underbrace{u+1}^{-2} u = -2 \int \underbrace{1}^{-1} \underbrace{-u+1}^{-1} du \right\} = -2(u - \operatorname{In}(u+1))$	M1	1.1b
(7)		$\left\{\int_{0}^{\frac{\pi}{2}}\frac{\sin 2\theta}{1+\cos \theta} d\theta = \right\} = -2\left[u-\ln(u+1)\right]_{1}^{0} = -2((0-\ln 1)-(1-\ln 2))$	M1	1.1b
		$= -2(-1 + \ln 2) = 2 - 2\ln 2 *$	A1*	2.1
(7 marks)			(7)	
		1	(7 n	narks)

Quest	ion 12 Notes:
M1:	See scheme
M1:	Attempts to differentiate $u = 1 + \cos \theta$ to give $\frac{du}{d\theta} = \dots$ and applies $\sin 2\theta = 2\sin \theta \cos \theta$
A1:	Applies $u = 1 + \cos\theta$ to show that the integral becomes $\int \frac{-2(u-1)}{u} du$
M1:	Achieves an expression in <i>u</i> that can be directly integrated (e.g. dividing each term by <i>u</i> or applying partial fractions) and integrates to give an expression in <i>u</i> of the form $\pm \lambda u \pm \mu \ln u$, $\lambda, \mu \neq 0$
M1:	For integration in <i>u</i> of the form $\pm 2(u - \ln u)$
M1:	Applies <i>u</i> -limits of 1 and 2 to an expression of the form $\pm \lambda u \pm \mu \ln u$, $\lambda, \mu \neq 0$ and subtracts either way round
A1*:	Applies <i>u</i> -limits the right way round, i.e.
	• $\int_{2}^{1} \frac{-2(u-1)}{u} du = -2 \int_{2}^{1} \left(1 - \frac{1}{u}\right) du = -2 \left[u - \ln u\right]_{2}^{1} = -2((1 - \ln 1) - (2 - \ln 2))$
	• $\int_{2}^{1} \frac{-2(u-1)}{u} du = 2 \int_{1}^{2} \left(1 - \frac{1}{u}\right) du = 2 \left[u - \ln u\right]_{1}^{2} = 2((2 - \ln 2) - (1 - \ln 1))$
	and correctly proves $\int_{0}^{\frac{\pi}{2}} \frac{\sin 2\theta}{1 + \cos \theta} d\theta = 2 - 2\ln 2$, with no errors seen
Alt 1	
M1:	See scheme
M1:	Attempts to differentiate $u = \cos\theta$ to give $\frac{du}{d\theta} = \dots$ and applies $\sin 2\theta = 2\sin\theta\cos\theta$
A1:	Applies $u = \cos\theta$ to show that the integral becomes $\int \frac{-2u}{u+1} du$
M1:	Achieves an expression in <i>u</i> that can be directly integrated (e.g. by applying partial fractions or a substitution $v = u+1$) and integrates to give an expression in <i>u</i> of the form
	$\pm \lambda u \pm \mu \ln(u+1), \lambda, \mu \neq 0$ or $\pm \lambda v \pm \mu \ln v, \lambda, \mu \neq 0$, where $v = u+1$
M1:	For integration in u in the form $\pm 2(u - \ln(u+1))$
M1:	Either
	• Applies <i>u</i> -limits of 0 and 1 to an expression of the form $\pm \lambda u \pm \mu \ln(u+1)$, $\lambda, \mu \neq 0$ and subtracts either way round
	• Applies <i>v</i> -limits of 1 and 2 to an expression of the form $\pm \lambda v \pm \mu \ln v$, $\lambda, \mu \neq 0$, where
	v = u+1 and subtracts either way round
A1*:	Applies <i>u</i> -limits the right way round, (o.e. in v) i.e.
	• $\int_{1}^{0} \frac{-2u}{u+1} du = -2 \int_{1}^{0} \left(1 - \frac{1}{u+1}\right) du = -2 \left[u - \ln(u+1)\right]_{1}^{0} = -2((0 - \ln 1) - (1 - \ln 2))$
	• $\int_{1}^{0} \frac{-2u}{u+1} du = 2 \int_{0}^{1} \left(1 - \frac{1}{u+1} \right) du = 2 \left[u - \ln(u+1) \right]_{0}^{1} = 2((1 - \ln 2) - (0 - \ln 1))$
	and correctly proves $\int_{0}^{\pi} \frac{\sin 2\theta}{1 + \cos \theta} d\theta = 2 - 2\ln 2$, with no errors seen

Question	Scheme	Marks	AOs
13 (a)	R = 2.5	B1	1.1b
	$\tan \alpha = \frac{1.5}{2} \text{o.e.}$	M1	1.1b
	$\alpha = 0.6435$, so $2.5\sin(\theta - 0.6435)$	A1	1.1b
		(3)	
(b)	e.g. $D = 6 + 2\sin\left(\frac{4\pi(0)}{25}\right) - 1.5\cos\left(\frac{4\pi(0)}{25}\right) = 4.5m$ or $D = 6 + 2.5\sin\left(\frac{4\pi(0)}{25} - 0.6435\right) = 4.5m$	B1	3.4
		(1)	
(c)	$D_{\text{max}} = 6 + 2.5 = 8.5 \mathrm{m}$	B1ft	3.4
		(1)	
(d)	Sets $\frac{4\pi t}{25}$ - "0.6435" = $\frac{5\pi}{2}$ or $\frac{\pi}{2}$	M1	1.1b
	Afternoon solution $\Rightarrow \frac{4\pi t}{25} - "0.6435" = \frac{5\pi}{2} \Rightarrow t = \frac{25}{4\pi} \left(\frac{5\pi}{2} + "0.6435"\right)$	M1	3.1b
	\Rightarrow t = 16.9052 \Rightarrow Time = 16:54 or 4:54 pm	A1	3.2a
		(3)	
(e)(i)	• An attempt to find the depth of water at 00:00 on 19th October 2017 for at least one of either Tom's model or Jolene's model.	M1	3.4
	 At 00:00 on 19th October 2017, Tom: D = 3.72 m and Jolene: H = 4.5 m and e.g. As 4.5 ≠ 3.72 then Jolene's model is not true Jolene's model is not continuous at 00:00 on 19th October 2017 Jolene's model does not continue on from where Tom's model has ended 	A1	3.5a
(ii)	To make the model continuous, e.g. • $H = 5.22 + 2\sin\left(\frac{4\pi x}{25}\right) - 1.5\cos\left(\frac{4\pi x}{25}\right), 0 \le x < 24$ • $H = 6 + 2\sin\left(\frac{4\pi(x+24)}{25}\right) - 1.5\cos\left(\frac{4\pi(x+24)}{25}\right), 0 \le x < 24$	B1	3.3
		(3)	
	·	(11 marks)	

Quest	ion Scheme	Marks	AOs
13 (d Alt	1 = 106435'' = -10665'' = -1065''' = -1065'''' = -1065'''' = -1065'''' = -1065'''' = -1065'''' = -1065'''' = -1065'''' = -1065'''' = -1065'''' = -1065'''' = -1065''''' = -1065'''' = -1065''''''''''''''''''''''''''''''''''''	M1	1.1b
	$\text{Period} = 2\pi \div \left(\frac{4\pi}{25}\right) = 12.5$	M1	2.16
	Afternoon solution $\Rightarrow t = 12.5 + \frac{25}{4\pi} \left(\frac{\pi}{2} + "0.6435"\right)$	M1	3.1b
	\Rightarrow t = 16.9052 \Rightarrow Time = 16:54 or 4:54 pm	A1	3.2a
		(3)	
Questi	ion 13 Notes:		
(a)			
B1:	$R = 2.5$ Condone $R = \sqrt{6.25}$		
M1:	For either $\tan \alpha = \frac{1.5}{2}$ or $\tan \alpha = -\frac{1.5}{2}$ or $\tan \alpha = \frac{2}{1.5}$ or $\tan \alpha = -\frac{2}{1.5}$		
A1:	$\alpha = $ awrt 0.6435		
(b)			
B1:	Uses Tom's model to find $D = 4.5$ (m) at 00:00 on 18th October 2017		
(c) B1ft:	Either 8.5 or follow through " $6 +$ their R" (by using their R found in part (a))		
(d)			
M1:	Realises that $D = 6 + 2\sin\left(\frac{4\pi t}{25}\right) - 1.5\cos\left(\frac{4\pi t}{25}\right) = 6 + "2.5"\sin\left(\frac{4\pi t}{25} - "0.6435\right)$	and	
	so maximum depth occurs when $\sin\left(\frac{4\pi t}{25} - "0.6435"\right) = 1 \Rightarrow \frac{4\pi t}{25} - "0.6435" =$	$\frac{\pi}{2}$ or $\frac{5\pi}{2}$	
M1:	Uses the model to deduce that a p.m. solution occurs when $\frac{4\pi t}{25}$ - "0.6435" = $\frac{5\pi}{2}$ and rearranges		
	this equation to make $t = \dots$		
A1:	Finds that maximum depth occurs in the afternoon at 16:54 or 4:54 pm		
(d) Alt 1			
M1:	Maximum depth occurs when $\sin\left(\frac{4\pi t}{25} - "0.6435"\right) = 1 \Rightarrow \frac{4\pi t}{25} - "0.6435" = \frac{\pi}{2}$		
M1:	Rearranges to make $t =$ and adds on the period, where period $= 2\pi \div \left(\frac{4\pi}{25}\right) \left\{= 12.5\right\}$		
A1:	Finds that maximum depth occurs in the afternoon at 16:54 or 4:54 pm		

Quest	ion 13 Notes Continued:
(e)(i)	
M1:	See scheme
A1:	See scheme
	Note: Allow Special Case M1 for a candidate who just states that Jolene's model is not continuous at 00:00 on 19th October 2017 o.e.
(e)(ii)	
B1:	Uses the information to set up a new model for <i>H</i> . (See scheme)

Questi	on Scheme	Marks	AOs
14	$x = 4\cos\left(t + \frac{\pi}{6}\right), y = 2\sin t$		
	$x + y = 4 \left(\cos t \cos \left(\frac{\pi}{6} \right) - \sin t \sin \left(\frac{\pi}{6} \right) \right) + 2 \sin t$	M1	3.1a
	$x + y = 4\left(\cos(\cos(\frac{1}{6}) - \sin(\sin(\frac{1}{6})) + 2\sin(1)\right)$	M1	1.1b
	$x + y = 2\sqrt{3}\cos t$	A1	1.1b
	$\left(\frac{x+y}{2\sqrt{3}}\right)^2 + \left(\frac{y}{2}\right)^2 = 1$	M1	3.1a
	$\frac{(x+y)^2}{12} + \frac{y^2}{4} = 1$		
	$(x+y)^2 + 3y^2 = 12$	A1	2.1
		(5)	
14 Alt 1	$(x+y)^2 = \left(4\cos\left(t+\frac{\pi}{6}\right)+2\sin t\right)^2$		
	$= \left(4\left(\cos t \cos\left(\frac{\pi}{6}\right) - \sin t \sin\left(\frac{\pi}{6}\right)\right) + 2\sin t\right)^2$	M1	3.1a
	$= \left(4\left(\cos t \cos\left(\frac{1}{6}\right) - \sin t \sin\left(\frac{1}{6}\right)\right) + 2\sin t\right)$	M1	1.1b
	$=\left(2\sqrt{3}\cos t\right)^2$ or $12\cos^2 t$	A1	1.1b
	So, $(x + y)^2 = 12(1 - \sin^2 t) = 12 - 12\sin^2 t = 12 - 12\left(\frac{y}{2}\right)^2$	M1	3.1a
	$(x+y)^2 + 3y^2 = 12$	A1	2.1
		(5)	
		(5 r	narks)
Questi	tion 14 Notes:		
M1:	Looks ahead to the final result and uses the compound angle formula in a full attempt to write down an expression for $x + y$ which is in terms of t only.		
M1:	Applies the compound angle formula on their term in x. E.g.		
	$\cos\left(t + \frac{\pi}{6}\right) \to \cos t \cos\left(\frac{\pi}{6}\right) \pm \sin t \sin\left(\frac{\pi}{6}\right)$		
A1:	Uses correct algebra to find $x + y = 2\sqrt{3}\cos t$		
M1:	Complete strategy of applying $\cos^2 t + \sin^2 t = 1$ on a rearranged $x + y = "2\sqrt{3}c$ to achieve an equation in x and y only	$\cos t$ ", $y = 2$	sin <i>t</i>
A1:	Correctly proves $(x + y)^2 + ay^2 = b$ with both $a = 3, b = 12$, and no errors seen		

Quest	ion 14 Notes Continued:
Alt 1	
M1:	Apply in the same way as in the main scheme
M1:	Apply in the same way as in the main scheme
A1:	Uses correct algebra to find $(x + y)^2 = (2\sqrt{3}\cos t)^2$ or $(x + y)^2 = 12\cos^2 t$
M1:	Complete strategy of applying $\cos^2 t + \sin^2 t = 1$ on $(x + y)^2 = ("2\sqrt{3}\cos t")^2$ to achieve an
	equation in x and y only
A1:	Correctly proves $(x + y)^2 + ay^2 = b$ with both $a = 3, b = 12$, and no errors seen