9MAO/ 01: Pure Mathematics Paper 1 Mark scheme

Question	Scheme	Marks	AOs
2 (a)	$(4+5 x)^{\frac{1}{2}}=(4)^{\frac{1}{2}}\left(1+\frac{5 x}{4}\right)^{\frac{1}{2}}=2\left(1+\frac{5 x}{4}\right)^{\frac{1}{2}}$	B1	1.1b
	$=\{2\}\left[\left(\frac{1}{2}\right)\left(\frac{5 x}{4}\right)+\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)(5 x)^{2}+\ldots\right]$	M1	1.1b
		A1ft	1.1b
	$=2+\frac{5}{4} x-\frac{25}{64} x^{2}+\ldots$	A1	2.1
		(4)	
(b)(i)	$\left\{x=\frac{1}{10} \Rightarrow\right\}(4+5(0.1))^{\frac{1}{2}}$	M1	1.1b
	$=\sqrt{4.5}=\frac{3}{2} \sqrt{2}$ or $\frac{3}{\sqrt{2}}$		
	$\begin{aligned} & \frac{3}{2} \sqrt{2} \text { or } 1.5 \sqrt{2} \text { or } \frac{3}{\sqrt{2}}=2+\frac{5}{4}\left(\frac{1}{10}\right)-\frac{25}{64}\left(\frac{1}{10}\right)^{2}+\ldots\{=2.121 \ldots\} \\ & \Rightarrow \frac{3}{2} \sqrt{2}=\frac{543}{256} \text { or } \frac{3}{\sqrt{2}}=\frac{543}{256} \Rightarrow \sqrt{2}=\ldots \end{aligned}$	M1	3.1a
	So, $\sqrt{2}=\frac{181}{128}$ or $\sqrt{2}=\frac{256}{181}$	A1	1.1b
(b)(ii)	$x=\frac{1}{10}$ satisfies $\|x\|<\frac{4}{5}$ (o.e.), so the approximation is valid.	B1	2.3
		(4)	
(8 marks)			

Question 2 Notes:

(a)

B1: Manipulates $(4+5 x)^{\frac{1}{2}}$ by taking out a factor of $(4)^{\frac{1}{2}}$ or 2
M1: Expands $(\ldots+\lambda x)^{\frac{1}{2}}$ to give at least 2 terms which can be simplified or un-simplified,
E.g. $1+\left(\frac{1}{2}\right)(\lambda x)$ or $\left(\frac{1}{2}\right)(\lambda x)+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}(\lambda x)^{2} \quad$ or $\quad 1+\ldots+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}(\lambda x)^{2}$
where λ is a numerical value and where $\lambda \neq 1$.
A1ft: A correct simplified or un-simplified $1+\left(\frac{1}{2}\right)(\lambda x)+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}(\lambda x)^{2}$ expansion with consistent ($\left.\lambda x\right)$
A1: \quad Fully correct solution leading to $2+\frac{5}{4} x+k x^{2}$, where $k=-\frac{25}{64}$
(b)(i)

M1: Attempts to substitute $x=\frac{1}{10}$ or 0.1 into $(4+5 x)^{\frac{1}{2}}$
M1: A complete method of finding an approximate value for $\sqrt{2}$. E.g.

- substituting $x=\frac{1}{10}$ or 0.1 into their part (a) binomial expansion and equating the result to an expression of the form $\alpha \sqrt{2}$ or $\frac{\beta}{\sqrt{2}} ; \alpha, \beta \neq 0$
- followed by re-arranging to give $\sqrt{2}=\ldots$

A1: $\quad \frac{181}{128}$ or any equivalent fraction, e.g. $\frac{362}{256}$ or $\frac{543}{384}$
Also allow $\frac{256}{181}$ or any equivalent fraction
(b)(ii)

B1: Explains that the approximation is valid because $x=\frac{1}{10}$ satisfies $|x|<\frac{4}{5}$

Question	Scheme	Marks	AOs
5 (a)(i)	$\mathrm{f}(x)=x^{3}+a x^{2}-a x+48, x \in \mathbb{R}$		
	$\mathrm{f}(-6)=(-6)^{3}+a(-6)^{2}-a(-6)+48$	M1	1.1b
	$=-216+36 a+6 a+48=0 \Rightarrow 42 a=168 \Rightarrow a=4^{*}$	A1*	1.1b
(a)(ii)	Hence, $\mathrm{f}(x)=(x+6)\left(x^{2}-2 x+8\right)$	M1	2.2a
		A1	1.1b
		(4)	
(b)	$2 \log _{2}(x+2)+\log _{2} x-\log _{2}(x-6)=3$		
	E.g. - $\log _{2}(x+2)^{2}+\log _{2} x-\log _{2}(x-6)=3$ - $2 \log _{2}(x+2)+\log _{2}\left(\frac{x}{x-6}\right)=3$		
	$\log _{2}\left(\frac{x(x+2)^{2}}{(x-6)}\right)=3 \quad\left[\right.$ or $\left.\log _{2}\left(x(x+2)^{2}\right)=\log _{2}(8(x-6))\right]$	M1	1.1b
	$\left(\frac{x(x+2)^{2}}{(x-6)}\right)=2^{3} \quad\left\{\right.$ i.e. $\log _{2} a=3 \Rightarrow a=2^{3}$ or 8$\}$	B1	1.1b
	$x(x+2)^{2}=8(x-6) \Rightarrow x\left(x^{2}+4 x+4\right)=8 x-48$		
	$\Rightarrow x^{3}+4 x^{3}+4 x=8 x-48 \Rightarrow x^{3}+4 x^{3}-4 x+48=0$ *	A1 *	2.1
		(4)	
(c)	$2 \log _{2}(x+2)+\log _{2} x-\log _{2}(x-6)=3 \Rightarrow x^{3}+4 x^{3}-4 x+48=0$		
	$\Rightarrow(x+6)\left(x^{2}-2 x+8\right)=0$		
	Reason 1: E.g. - $\log _{2} x$ is not defined when $x=-6$ - $\log _{2}(x-6)$ is not defined when $x=-6$ - $x=-6$, but $\log _{2} x$ is only defined for $x>0$ Reason 2: - $b^{2}-4 a c=-28<0$, so $\left(x^{2}-2 x+8\right)=0$ has no (real) roots		
	At least one of Reason 1 or Reason 2	B1	2.4
	Both Reason 1 and Reason 2	B1	2.1
		(2)	
(10 marks)			

Question 5 Notes:

(a)(i)

M1: Applies $\mathrm{f}(-\mathbf{6})$
A1*: Applies $\mathrm{f}(-\mathbf{6})=\mathbf{0}$ to show that $\boldsymbol{a}=\mathbf{4}$
(a)(ii)

M1: Deduces $(\boldsymbol{x}+\mathbf{6})$ is a factor of $\mathbf{f}(\boldsymbol{x})$ and attempts to find a quadratic factor of $\mathbf{f}(\boldsymbol{x})$ by either equating coefficients or by algebraic long division
A1: $\quad(x+6)\left(x^{2}-2 x+8\right)$
(b)

M1: Evidence of applying a correct law of logarithms
M1: Uses correct laws of logarithms to give either

- an expression of the form $\log _{2}(\mathrm{~h}(x))=k$, where k is a constant
- an expression of the form $\log _{2}(\mathrm{~g}(x))=\log _{2}(\mathrm{~h}(x))$

B1: \quad Evidence in their working of $\log _{2} a=3 \Rightarrow a=2^{3}$ or 8
A1*: Correctly proves $x^{3}+4 x^{3}-4 x+48=0$ with no errors seen
(c)

B1: See scheme
B1: See scheme

Question	Scheme	Marks	AOs
6 (a)	Attempts to use an appropriate model; e.g. $y=A(3-x)(3+x)$ or $y=A\left(9-x^{2}\right)$	M1	3.3
	e.g. $y=A\left(9-x^{2}\right)$ Substitutes $x=0, y=5 \Rightarrow 5=A(9-0) \Rightarrow A=\frac{5}{9}$	M1	3.1b
	$y=\frac{5}{9}\left(9-x^{2}\right)$ or $y=\frac{5}{9}(3-x)(3+x),\{-3 \leqslant x \leqslant 3\}$	A1	1.1b
		(3)	
(b)	Substitutes $x=\frac{2.4}{2}$ into their $y=\frac{5}{9}\left(9-x^{2}\right)$	M1	3.4
	$y=\frac{5}{9}\left(9-x^{2}\right)=4.2>4.1 \Rightarrow$ Coach can enter the tunnel	A1	2.2b
		(2)	
(b) Alt 1	$4.1=\frac{5}{9}\left(9-x^{2}\right) \Rightarrow x=\frac{9 \sqrt{2}}{10}$, so maximum width $=2\left(\frac{9 \sqrt{2}}{10}\right)$	M1	3.4
	$=2.545 \ldots>2.4 \Rightarrow$ Coach can enter the tunnel	A1	2.2b
		(2)	
(c)	E.g. - Coach needs to enter through the centre of the tunnel. This will only be possible if it is a one-way tunnel - In real-life the road may be cambered (and not horizontal) - The quadratic curve BCA is modelled for the entrance to the tunnel but we do not know if this curve is valid throughout the entire length of the tunnel - There may be overhead lights in the tunnel which may block the path of the coach	B1	3.5b
		(1)	
(6 marks)			
Question 6 Notes:			
(a) M1: T M1: A A1: F (b) M1: S A1: A m (c) B1: S	slates the given situation into an appropriate quadratic model - see scheme lies the maximum height constraint in an attempt to find the equation of the m ds a suitable equation - see scheme scheme plies a fully correct argument to infer \{by assuming that curve $B C A$ is quadratic surements are correct\}, that is possible for the coach to enter the tunnel scheme	del - see nd the g	cheme en

7
$\left\{\int x \mathrm{e}^{2 x} \mathrm{~d} x\right\},\left\{\begin{array}{ll}u=x & \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=1 \\ \frac{\mathrm{~d} v}{\mathrm{~d} x}=\mathrm{e}^{2 x} & \Rightarrow v=\frac{1}{2} \mathrm{e}^{2 x}\end{array}\right\}$

$\left\{\int x \mathrm{e}^{2 x} \mathrm{~d} x\right\}=\frac{1}{2} x \mathrm{e}^{2 x}-\int \frac{1}{2} \mathrm{e}^{2 x}\{\mathrm{~d} x\}$	M1	3.1a
$\left\{\int 2 \mathrm{e}^{2 x}-x \mathrm{e}^{2 x} \mathrm{~d} x\right\}=\mathrm{e}^{2 x}-\left(\frac{1}{2} x \mathrm{e}^{2 x}-\int \frac{1}{2} \mathrm{e}^{2 x}\{\mathrm{~d} x\}\right)$	M1	1.1b
$=\mathrm{e}^{2 x}-\left(\frac{1}{2} x \mathrm{e}^{2 x}-\frac{1}{4} \mathrm{e}^{2 x}\right)$	A1	1.1b

$\operatorname{Area}(R)=\int_{0}^{2} 2 \mathrm{e}^{2 x}-x \mathrm{e}^{2 x} \mathrm{~d} x=\left[\frac{5}{4} \mathrm{e}^{2 x}-\frac{1}{2} x \mathrm{e}^{2 x}\right]_{0}^{2} \quad$ M1 $\quad 2.2 \mathrm{a}$
$=\left(\frac{5}{4} \mathrm{e}^{4}-\mathrm{e}^{4}\right)-\left(\frac{5}{4} \mathrm{e}^{2(0)}-\frac{1}{2}(0) \mathrm{e}^{0}\right)=\frac{1}{4} \mathrm{e}^{4}-\frac{5}{4} \quad$ A1 $\quad 2.1$

Question 7 Notes:

M1: Attempts to solve the problem by recognising the need to apply a method of integration by parts on either $x \mathrm{e}^{2 x}$ or $(2-x) \mathrm{e}^{2 x}$. Allow this mark for either

- $\pm x \mathrm{e}^{2 x} \rightarrow \pm \lambda x \mathrm{e}^{2 x} \pm \int \mu \mathrm{e}^{2 x}\{\mathrm{~d} x\}$
- $(2-x) \mathrm{e}^{2 x} \rightarrow \pm \lambda(2-x) \mathrm{e}^{2 x} \pm \int \mu \mathrm{e}^{2 x}\{\mathrm{~d} x\}$
where $\lambda, \mu \neq 0$ are constants.
M1: For either
- $2 \mathrm{e}^{2 x}-x \mathrm{e}^{2 x} \rightarrow \mathrm{e}^{2 x} \pm \frac{1}{2} x \mathrm{e}^{2 \mathrm{x}} \pm \int \frac{1}{2} \mathrm{e}^{2 x}\{\mathrm{~d} x\}$
- $(2-x) \mathrm{e}^{2 x} \rightarrow \pm \frac{1}{2}(2-x) \mathrm{e}^{2 x} \pm \int \frac{1}{2} \mathrm{e}^{2 x}\{\mathrm{~d} x\}$

Correct integration which can be simplified or un-simplified. E.g.

- $2 \mathrm{e}^{2 x}-x \mathrm{e}^{2 x} \rightarrow \mathrm{e}^{2 x}-\left(\frac{1}{2} x \mathrm{e}^{2 x}-\frac{1}{4} \mathrm{e}^{2 x}\right)$
- $2 \mathrm{e}^{2 x}-x \mathrm{e}^{2 \mathrm{x}} \rightarrow \mathrm{e}^{2 \mathrm{x}}-\frac{1}{2} x \mathrm{e}^{2 x}+\frac{1}{4} \mathrm{e}^{2 \mathrm{x}}$
- $2 \mathrm{e}^{2 x}-x \mathrm{e}^{2 x} \rightarrow \frac{5}{4} \mathrm{e}^{2 x}-\frac{1}{2} x \mathrm{e}^{2 x}$
- $(2-x) \mathrm{e}^{2 x} \rightarrow \frac{1}{2}(2-x) \mathrm{e}^{2 x}+\frac{1}{4} \mathrm{e}^{2 x}$

M1: Deduces that the upper limit is 2 and uses limits of 2 and 0 on their integrated function
A1: Correct proof leading to $p \mathrm{e}^{4}+q$, where $p=\frac{1}{4}, q=-\frac{5}{4}$

Question	Scheme	Marks	AOs
9	$\text { Gradient of chord }=\frac{\left(2(x+h)^{3}+5\right)-\left(2 x^{3}+5\right)}{x+h-h}$	B1	1.1b
		M1	2.1
	$(x+h)^{3}=x^{3}+3 x^{2} h+3 x h^{2}+h^{3}$	B1	1.1b
	$\text { Gradient of chord }=\frac{\left(2\left(x^{3}+3 x^{2} h+3 x h^{2}+h^{3}\right)+5\right)-\left(2 x^{3}+5\right)}{1+h-1}$		
	$=\frac{2 x^{3}+6 x^{2} h+6 x h^{2}+2 h^{3}+5-2 x^{3}-5}{1+h-1}$		
	$=\frac{6 x^{2} h+6 x h^{2}+2 h^{3}}{h}$		
	$=6 x^{2}+6 x h+2 h^{2}$	A1	1.1b
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\lim _{h \rightarrow 0}\left(6 x^{2}+6 x h+2 h^{2}\right)=6 x^{2}$ and so at $P, \frac{\mathrm{~d} y}{\mathrm{~d} x}=6(1)^{2}=6$	A1	2.2a
		(5)	
$\begin{gathered} 9 \\ \text { Alt } 1 \end{gathered}$	Let a point Q have x coordinate $1+h$, so $y_{Q}=2(1+h)^{3}+5$	B1	1.1b
	$\left\{P(1,7), Q\left(1+h, 2(1+h)^{3}+3\right) \Rightarrow\right\}$		
	$\text { Gradient } P Q=\frac{2(1+h)^{3}+5-7}{1+h-1}$	M1	2.1
	$(1+h)^{3}=1+3 h+3 h^{2}+h^{3}$	B1	1.1b
	$\text { Gradient } P Q=\frac{2\left(1+3 h+3 h^{2}+h^{3}\right)+5-7}{1+h-1}$		
	$=\frac{2+6 h+6 h^{2}+2 h^{3}+5-7}{1+h-1}$		
	$=\frac{6 h+6 h^{2}+2 h^{3}}{h}$		
	$=6+6 h+2 h^{2}$	A1	1.1b
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\lim _{h \rightarrow 0}\left(6+6 h+2 h^{2}\right)=6$	A1	2.2a
		(5)	
(5 marks)			

Question 9 Notes:

B1: $\quad 2(x+h)^{3}+5$, seen or implied
M1: Begins the proof by attempting to write the gradient of the chord in terms of x and h
B1: $\quad(x+h)^{3} \rightarrow x^{3}+3 x^{2} h+3 x h^{2}+h^{3}$, by expanding brackets or by using a correct binomial expansion
M1: Correct process to obtain the gradient of the chord as $\alpha x^{2}+\beta x h+\gamma h^{2}, \alpha, \beta, \gamma \neq 0$
A1: Correctly shows that the gradient of the chord is $6 x^{2}+6 x h+2 h^{2}$ and applies a limiting argument to deduce when $y=2 x^{3}+5, \frac{\mathrm{~d} y}{\mathrm{~d} x}=6 x^{2}$. E.g. $\lim _{h \rightarrow 0}\left(6 x^{2}+6 x h+2 h^{2}\right)=6 x^{2}$. Finally, deduces that at the point $P, \frac{\mathrm{~d} y}{\mathrm{~d} x}=6$.
Note: δx can be used in place of h
Alt 1
B1: Writes down the y coordinate of a point close to P.
E.g. For a point Q with $x=1+h,\left\{y_{Q}\right\}=2(1+h)^{3}+5$

M1: Begins the proof by attempting to write the gradient of the chord $P Q$ in terms of h
B1: $\quad(1+h)^{3} \rightarrow 1+3 h+3 h^{2}+h^{3}$, by expanding brackets or by using a correct binomial expansion
M1: \quad Correct process to obtain the gradient of the chord $P Q$ as $\alpha+\beta h+\gamma h^{2}, \alpha, \beta, \gamma \neq 0$
A1: Correctly shows that the gradient of $P Q$ is $6+6 h+2 h^{2}$ and applies a limiting argument to deduce that at the point P on $y=2 x^{3}+5, \frac{\mathrm{~d} y}{\mathrm{~d} x}=6$. E.g. $\lim _{h \rightarrow 0}\left(6+6 h+2 h^{2}\right)=6$

Note: For Alt 1, δx can be used in place of h

Question	Scheme	Marks	AOs
10 (a)	$y=\frac{3 x-5}{x+1} \Rightarrow y(x+1)=3 x-5 \Rightarrow x y+y=3 x-5 \Rightarrow y+5=3 x-x y$	M1	1.1b
	$\Rightarrow y+5=x(3-y) \Rightarrow \frac{y+5}{3-y}=x$	M1	2.1
	Hence $\mathrm{f}^{-1}(x)=\frac{x+5}{3-\boldsymbol{x}}, \quad x \in \mathbb{R}, x \neq 3$	A1	2.5
		(3)	
(b)	$\mathrm{ff}(x)=\frac{3\left(\frac{3 x-5}{x+1}\right)-5}{\left(\frac{3 x-5}{x+1}\right)+1}$	M1	1.1a
	$\begin{gathered} 3(3 x-5)-5(x+1) \\ x+1 \end{gathered}$	M1	1.1b
	$\frac{(3 x-5)+(x+1)}{x+1}$	A1	1.1b
	$=\frac{9 x-15-5 x-5}{3 x-5+x+1}=\frac{4 x-20}{4 x-4}=\frac{x-5}{x-1} \quad$ (note that $a=-5$)	A1	2.1
		(4)	
(c)	$f \mathrm{fg}(2)=\mathrm{f}(4-6)=\mathrm{f}(-2)=\frac{3(-2)-5}{-2+1}$	M1	1.1b
	$-2+1$	A1	1.1b
		(2)	
(d)	$\mathrm{g}(\mathrm{x})=\mathrm{x}^{2}-3 x=(x-1.5)^{2}-2.25$. Hence $\mathrm{g}_{\text {min }}=-2.25$	M1	2.1
	Either $\mathrm{g}_{\text {min }}=-2.25$ or $\mathrm{g}(x) \geqslant-2.25$ or $\mathrm{g}(5)=25-15=10$	B1	1.1b
	$-2.25 \leqslant \mathrm{~g}(x) \leqslant 10$ or $-2.25 \leqslant y \leqslant 10$	A1	1.1b
		(3)	
(e)	E.g. - the function g is many-one - the function g is not one-one - the inverse is one-many - $\mathrm{g}(0)=\mathrm{g}(3)=0$	B1	2.4
		(1)	
(13 marks)			

Question 10 Notes:

(a)

M1: Attempts to find the inverse by cross-multiplying and an attempt to collect all the x-terms (or swapped y-terms) onto one side
M1: A fully correct method to find the inverse
A1: A correct $\mathrm{f}^{-1}(x)=\frac{x+5}{3-x}, x \in \mathbb{R}, x \neq 3$, expressed fully in function notation (including the domain)
(b)

M1: Attempts to substitute $\mathrm{f}(x)=\frac{3 x-5}{x+1}$ into $\frac{3 \mathrm{f}(x)-5}{\mathrm{f}(x)+1}$
M1: Applies a method of "rationalising the denominator" for both their numerator and their denominator.
A1: $\quad 3(3 x-5)-5(x+1)$
$\frac{x+1}{\frac{(3 x-5)+(x+1)}{x+1}}$ which can be simplified or un-simplified
A1: \quad Shows $\mathrm{ff}(x)=\frac{x+a}{x-1}$ where $a=-5$ or $\mathrm{ff}(x)=\frac{x-5}{x-1}$, with no errors seen.
(c)

M1: \quad Attempts to substitute the result of $\mathbf{g}(2)$ into f
A1: \quad Correctly obtains $\mathbf{f g}(2)=11$
(d)

M1: Full method to establish the minimum of g.
E.g.

- $(x \pm \alpha)^{2}+\beta$ leading to $g_{\min }=\beta$
- Finds the value of x for which $\mathbf{g}^{\prime}(\boldsymbol{x})=\mathbf{0}$ and inserts this value of x back into $\mathbf{g}(\boldsymbol{x})$ in order to find to $\boldsymbol{g}_{\text {min }}$

B1: For either

- finding the correct minimum value of g
(Can be implied by $\mathrm{g}(x) \geqslant-2.25$ or $\mathrm{g}(x)>-2.25$)
- \quad stating $g(5)=25-15=10$

A1: \quad States the correct range for g. E.g. $-2.25 \leqslant g(x) \leqslant 10$ or $-2.25 \leqslant y \leqslant 10$
(e)

B1:
See scheme

Question	Scheme	Marks	AOs
11 (a)	$\mathrm{f}^{\prime}(x)=k-4 x-3 x^{2}$		
	$\mathrm{f}^{\prime \prime}(x)=-4-6 x=0$	M1	1.1b
	Criteria 1 Either $\mathrm{f}^{\prime \prime}(x)=-4-6 x=0 \Rightarrow x=\frac{4}{-6} \Rightarrow x=-\frac{2}{3}$ or $\mathbf{f}^{\prime \prime}\left(-\frac{2}{3}\right)=-4-6\left(-\frac{2}{3}\right)=0$ Criteria 2 Either $\begin{aligned} -f^{\prime \prime}(-0.7) & =-4-6(-0.7)=0.2>0 \\ f^{\prime \prime}(-0.6) & =-4-6(-0.6)=-0.4<0 \end{aligned}$ or - $f^{\prime \prime \prime}\left(-\frac{2}{3}\right)=-6 \neq 0$		
	At least one of Criteria 1 or Criteria 2	B1	2.4
	Both Criteria 1 and Criteria 2 and concludes C has a point of inflection at $x=-\frac{2}{3}$	A1	2.1
		(3)	
(b)	$\mathrm{f}^{\prime}(x)=k-4 x-3 x^{2}, A B=4 \sqrt{2}$		
		M1	1.1b
) $k x-2 x^{2}-x^{3}+$	A1	1.1b
	$\begin{aligned} & \mathrm{f}(0)=0 \text { or }(0,0) \Rightarrow c=0 \Rightarrow \mathrm{f}(x)=k x-2 x^{2}-x^{3} \\ & \{\mathrm{f}(x)=0 \Rightarrow\} \mathrm{f}(x)=x\left(k-2 x-x^{2}\right)=0 \Rightarrow\{x=0,\} k-2 x-x^{2}=0 \end{aligned}$	A1	2.2a
	$\left\{x^{2}+2 x-k=0\right\} \Rightarrow(x+1)^{2}-1-k=0, x=\ldots$	M1	2.1
	$\Rightarrow x=-1 \pm \sqrt{k+1}$	A1	1.1b
	$A B=(-1+\sqrt{k+1})-(-1-\sqrt{k+1})=4 \sqrt{2} \Rightarrow k=\ldots$	M1	2.1
	So, $2 \sqrt{k+1}=4 \sqrt{2} \Rightarrow k=7$	A1	1.1b
		(7)	
(10 marks)			

Question 11 Notes:

(a)

M1: E.g.

- attempts to find $\mathbf{f}^{\prime \prime}\left(-\frac{2}{3}\right)$
- finds $\mathrm{f}^{\prime \prime}(x)$ and sets the result equal to 0

B1: See scheme
A1: See scheme
(b)

M1:
Integrates $\mathrm{f}^{\prime}(x)$ to give $\mathrm{f}(x)= \pm k x \pm \alpha x^{2} \pm \beta x^{3}, \alpha, \beta \neq 0$ with or without the constant of integration

A1: $\quad \mathrm{f}(x)=k x-2 x^{2}-x^{3}$, with or without the constant of integration
A1:
Finds $\mathrm{f}(x)=k x-2 x^{2}-x^{3}+c$, and makes some reference to $y=f(x)$ passing through the origin to deduce $\boldsymbol{c}=\mathbf{0}$. Proceeds to produce the result $k-2 x-x^{2}=0$ or $x^{2}+2 x-k=0$

M1:
Uses a valid method to solve the quadratic equation to give x in terms of k
A1 Correct roots for x in terms of k. i.e. $x=-1 \pm \sqrt{k+1}$
M1: Applies $A B=4 \sqrt{2}$ on $x=-1 \pm \sqrt{k+1}$ in a complete method to find $k=\ldots$
A1: Finds $k=7$ from correct solution only

Question	Scheme	Marks	AOs
12	$\int_{0}^{\frac{\pi}{2}} \frac{\sin 2 \theta}{1+\cos \theta} d \theta$		
	Attempts this question by applying the substitution $u=1+\cos \theta$ and progresses as far as achieving $\int \ldots \frac{(u-1)}{u} \ldots$	M1	3.1a
	$u=1+\cos \theta \Rightarrow \frac{\mathrm{d} u}{\mathrm{~d} \theta}=-\sin \theta$ and $\sin 2 \theta=2 \sin \theta \cos \theta$	M1	1.1b
	$\left\{\int \frac{\sin 2 \theta}{1+\cos \theta} \mathrm{d} \theta=\right\} \int \frac{2 \sin \theta \cos \theta}{1+\cos \theta} \mathrm{d} \theta=\int \frac{-2(u-1)}{u} \mathrm{~d} u$	A1	2.1
	-2 $\int\left(1-\frac{1}{2}\right) \mathrm{d} u=-2$	M1	1.1b
		M1	1.1b
	$\left\{\int_{0}^{\frac{\pi}{2}} \frac{\sin 2 \theta}{1+\cos \theta} \mathrm{d} \theta=\right\}=-2[u-\ln u]_{2}^{1}=-2((1-\ln 1)-(2-\ln 2))$	M1	1.1b
	$=-2(-1+\ln 2)=2-2 \ln 2$ *	A1*	2.1
		(7)	
$\begin{gathered} 12 \\ \text { Alt } 1 \end{gathered}$	Attempts this question by applying the substitution $\boldsymbol{u}=\boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}$ and progresses as far as achieving $\int \ldots \frac{u}{u+1} \ldots$	M1	3.1a
	$u=\cos \theta \Rightarrow \frac{\mathrm{d} u}{\mathrm{~d} \theta}=-\sin \theta$ and $\sin 2 \theta=2 \sin \theta \cos \theta$	M1	1.1b
	$\left\{\int \frac{\sin 2 \theta}{1+\cos \theta} \mathrm{d} \theta=\right\} \int \frac{2 \sin \theta \cos \theta}{1+\cos \theta} \mathrm{d} \theta=\int \frac{-2 u}{u+1} \mathrm{~d} u$	A1	2.1
		M1	1.1b
	$\left\{=-2 \int \frac{r^{\prime}}{u+1} \mathrm{~d} u=-2 \int 1-\frac{1}{u+1} \mathrm{~d} u\right\}=-2(u-\ln (u+1))$	M1	1.1b
	$\left\{\int_{0}^{\frac{\pi}{2}} \frac{\sin 2 \theta}{1+\cos \theta} \mathrm{d} \theta=\right\}=-2[u-\ln (u+1)]_{1}^{0}=-2((0-\ln 1)-(1-\ln 2))$	M1	1.1b
	$=-2(-1+\ln 2)=2-2 \ln 2$ *	A1*	2.1
		(7)	
(7 marks)			

Question 12 Notes:

M1: See scheme
M1: Attempts to differentiate $u=1+\cos \theta$ to give $\frac{\mathrm{d} u}{\mathrm{~d} \theta}=\ldots$ and applies $\sin 2 \theta=2 \sin \theta \cos \theta$
A1:
Applies $u=1+\cos \theta$ to show that the integral becomes $\int \frac{-2(u-1)}{u} \mathrm{~d} u$
M1: \quad Achieves an expression in u that can be directly integrated (e.g. dividing each term by u or applying partial fractions) and integrates to give an expression in u of the form $\pm \lambda u \pm \mu \ln u, \lambda, \mu \neq 0$
M1: \quad For integration in u of the form $\pm 2(u-\ln u)$
M1: Applies u-limits of 1 and 2 to an expression of the form $\pm \lambda u \pm \mu \ln u, \lambda, \mu \neq 0$ and subtracts either way round
A1*: Applies u-limits the right way round, i.e.

- $\int_{2}^{1} \frac{-2(u-1)}{u} \mathrm{~d} u=-2 \int_{2}^{1}\left(1-\frac{1}{u}\right) \mathrm{d} u=-2[u-\ln u]_{2}^{1}=-2((1-\ln 1)-(2-\ln 2))$
- $\int_{2}^{1} \frac{-2(u-1)}{u} \mathrm{~d} u=2 \int_{1}^{2}\left(1-\frac{1}{u}\right) \mathrm{d} u=2[u-\ln u]_{1}^{2}=2((2-\ln 2)-(1-\ln 1))$
and correctly proves $\int_{0}^{\frac{\pi}{2}} \frac{\sin 2 \theta}{1+\cos \theta} \mathrm{d} \theta=2-2 \ln 2$, with no errors seen
Alt 1
M1: See scheme
M1
Attempts to differentiate $u=\cos \theta$ to give $\frac{\mathrm{d} u}{\mathrm{~d} \theta}=\ldots$ and applies $\sin 2 \theta=2 \sin \theta \cos \theta$
A1:
Applies $u=\cos \theta$ to show that the integral becomes $\int \frac{-2 u}{u+1} \mathrm{~d} u$
M1: Achieves an expression in u that can be directly integrated (e.g. by applying partial fractions or a substitution $v=u+1$) and integrates to give an expression in u of the form
$\pm \lambda u \pm \mu \ln (u+1), \lambda, \mu \neq 0$ or $\pm \lambda v \pm \mu \ln v, \lambda, \mu \neq 0$, where $v=u+1$
M1: \quad For integration in u in the form $\pm 2(u-\ln (u+1))$
M1: Either
- Applies u-limits of 0 and 1 to an expression of the form $\pm \lambda u \pm \mu \ln (u+1), \lambda, \mu \neq 0$ and subtracts either way round
- Applies v-limits of 1 and 2 to an expression of the form $\pm \lambda v \pm \mu \ln v, \lambda, \mu \neq 0$, where $v=u+1$ and subtracts either way round

A1*: Applies u-limits the right way round, (o.e. in \boldsymbol{v}) i.e.

- $\int_{1}^{0} \frac{-2 u}{u+1} \mathrm{~d} u=-2 \int_{1}^{0}\left(1-\frac{1}{u+1}\right) \mathrm{d} u=-2[u-\ln (u+1)]_{1}^{0}=-2((0-\ln 1)-(1-\ln 2))$
- $\int_{1}^{0} \frac{-2 u}{u+1} \mathrm{~d} u=2 \int_{0}^{1}\left(1-\frac{1}{u+1}\right) \mathrm{d} u=2[u-\ln (u+1)]_{0}^{1}=2((1-\ln 2)-(0-\ln 1))$
and correctly proves $\int_{0}^{\frac{\pi}{2}} \frac{\sin 2 \theta}{1+\cos \theta} \mathbf{d} \theta=2-2 \ln 2$, with no errors seen

Question	Scheme	Marks	AOs
13 (a)	$R=2.5$	B1	1.1b
	$\boldsymbol{\operatorname { t a n }} \boldsymbol{\alpha}=\frac{1.5}{2}$ o.e.	M1	1.1b
	$\alpha=0.6435$, so $2.5 \sin (\theta-0.6435)$	A1	1.1b
		(3)	
(b)	$\begin{aligned} & \text { e.g. } D=6+2 \sin \left(\frac{4 \pi(0)}{25}\right)-1.5 \cos \left(\frac{4 \pi(0)}{25}\right)=4.5 \mathrm{~m} \\ & \text { or } D=6+2.5 \sin \left(\frac{4 \pi(0)}{25}-0.6435\right)=4.5 \mathrm{~m} \end{aligned}$	B1	3.4
		(1)	
(c)	$D_{\text {max }}=6+2.5=8.5 \mathrm{~m}$	B1ft	3.4
		(1)	
(d)	Sets $\frac{4 \pi t}{25}-{ }^{0} 0.6435 "=\frac{5 \pi}{2}$ or $\frac{\pi}{2}$	M1	1.1b
	Afternoon solution $\Rightarrow \frac{4 \pi t}{25}-{ }^{2} 0.6435 "=\frac{5 \pi}{2} \Rightarrow t=\frac{25}{4 \pi}\left(\frac{5 \pi}{2}+\right.$ "0.6435")	M1	3.1b
	$\Rightarrow t=16.9052 \ldots \Rightarrow$ Time $=16: 54$ or $4: 54 \mathrm{pm}$	A1	3.2a
		(3)	
(e)(i)	- An attempt to find the depth of water at 00:00 on 19th October 2017 for at least one of either Tom's model or Jolene's model.	M1	3.4
	- At 00:00 on 19th October 2017, Tom: $D=3.72 \ldots \mathrm{~m}$ and Jolene: $H=4.5 \mathrm{~m}$ and e.g. - As $4.5 \neq 3.72$ then Jolene's model is not true - Jolene's model is not continuous at 00:00 on 19th October 2017 - Jolene's model does not continue on from where Tom's model has ended	A1	3.5a
(ii)	To make the model continuous, e.g. - $H=5.22+2 \sin \left(\frac{4 \pi x}{25}\right)-1.5 \cos \left(\frac{4 \pi x}{25}\right), \quad 0 \leqslant x<24$ - $H=6+2 \sin \left(\frac{4 \pi(x+24)}{25}\right)-1.5 \cos \left(\frac{4 \pi(x+24)}{25}\right), \quad 0 \leqslant x<24$	B1	3.3
		(3)	
(11 marks)			

Question	Scheme	Marks	AOs
$\begin{gathered} 13 \text { (d) } \\ \text { Alt } 1 \end{gathered}$	Sets $\frac{4 \pi t}{25}-{ }^{\text {c }} 0.6435 "=\frac{\pi}{2}$	M1	1.1b
	$\begin{aligned} & \text { Period }=2 \pi \div\left(\frac{4 \pi}{25}\right)=12.5 \\ & \text { Afternoon solution } \Rightarrow t=12.5+\frac{25}{4 \pi}\left(\frac{\pi}{2}+" 0.6435 "\right) \end{aligned}$	M1	3.1b
	$\Rightarrow t=16.9052 \ldots \Rightarrow$ Time $=16: 54$ or $4: 54 \mathrm{pm}$	A1	3.2a
		(3)	

Question 13 Notes:

(a)

B1: $\quad R=2.5$ Condone $R=\sqrt{6.25}$
M1: For either $\tan \alpha=\frac{1.5}{2}$ or $\tan \alpha=-\frac{1.5}{2}$ or $\tan \alpha=\frac{2}{1.5}$ or $\tan \alpha=-\frac{2}{1.5}$
A1: $\quad \alpha=$ awrt 0.6435
(b)

B1: Uses Tom's model to find $D=4.5(\mathrm{~m})$ at $00: 00$ on 18th October 2017
(c)

B1ft: Either 8.5 or follow through " $6+$ their R " (by using their R found in part (a))
(d)

M1:
Realises that $D=6+2 \sin \left(\frac{4 \pi t}{25}\right)-1.5 \cos \left(\frac{4 \pi t}{25}\right)=6+" 2.5 " \sin \left(\frac{4 \pi t}{25}-70.6435 "\right)$ and so maximum depth occurs when $\sin \left(\frac{4 \pi t}{25}-" 0.6435 "\right)=1 \Rightarrow \frac{4 \pi t}{25}-" 0.6435 "=\frac{\pi}{2}$ or $\frac{5 \pi}{2}$

M1: Uses the model to deduce that a p.m. solution occurs when $\frac{4 \pi t}{25}-" 0.6435 "=\frac{5 \pi}{2}$ and rearranges this equation to make $t=\ldots$
A1: Finds that maximum depth occurs in the afternoon at 16:54 or $4: 54 \mathrm{pm}$
(d)

Alt 1
M1: Maximum depth occurs when $\sin \left(\frac{4 \pi t}{25}-" 0.6435 "\right)=1 \Rightarrow \frac{4 \pi t}{25}-" 0.6435 "=\frac{\pi}{2}$
M1: \quad Rearranges to make $t=\ldots$ and adds on the period, where period $=2 \pi \div\left(\frac{4 \pi}{25}\right)\{=12.5\}$
A1: Finds that maximum depth occurs in the afternoon at $16: 54$ or $4: 54 \mathrm{pm}$

Question 13 Notes Continued:

(e)(i)

M1: See scheme
A1: See scheme
Note: Allow Special Case M1 for a candidate who just states that Jolene's model is not continuous at 00:00 on 19th October 2017 o.e.
(e)(ii)

B1: Uses the information to set up a new model for H. (See scheme)

Question	Scheme	Marks	AOs
14	$x=4 \cos \left(t+\frac{\pi}{6}\right), \quad y=2 \sin t$		
	$x+y=4\left(\cos t \cos \left(\frac{\pi}{6}\right)-\sin t \sin \left(\frac{\pi}{6}\right)\right)+2 \sin t$	M1	3.1a
	$x+y=4\left(\cos 2 \cos \left(\frac{\pi}{6}\right)-\sin 2 \sin \left(\frac{\pi}{6}\right)\right)+2 \sin$	M1	1.1b
	$x+y=2 \sqrt{3} \cos t$	A1	1.1b
	$\left(\frac{x+y}{2 \sqrt{3}}\right)^{2}+\left(\frac{y}{2}\right)^{2}=1$	M1	3.1a
	$\frac{(x+y)^{2}}{12}+\frac{y^{2}}{4}=1$		
	$(x+y)^{2}+3 y^{2}=12$	A1	2.1
		(5)	
14 Alt 1	$(x+y)^{2}=\left(4 \cos \left(t+\frac{\pi}{6}\right)+2 \sin t\right)^{2}$		
	$\left(\left(\frac{\pi}{6}\right)-\sin \left(\frac{\pi}{6}\right)\right)+2 \sin$	M1	3.1a
	$=\left(4\left(\cos t \cos \left(\frac{\pi}{6}\right)-\sin t \sin \left(\frac{\pi}{6}\right)\right)^{+2 \sin t}\right)$	M1	1.1b
	$=(2 \sqrt{3} \cos t)^{2}$ or $12 \cos ^{2} t$	A1	1.1b
	So, $(x+y)^{2}=12\left(1-\sin ^{2} t\right)=12-12 \sin ^{2} t=12-12\left(\frac{y}{2}\right)^{2}$	M1	3.1a
	$(x+y)^{2}+3 y^{2}=12$	A1	2.1
		(5)	
(5 marks)			
Question 14 Notes:			
M1: ${ }^{\text {L }}$	Looks ahead to the final result and uses the compound angle formula in a full attempt to write down an expression for $x+y$ which is in terms of t only.		
M1:A 	Applies the compound angle formula on their term in x. E.g.$\cos \left(t+\frac{\pi}{6}\right) \rightarrow \cos t \cos \left(\frac{\pi}{6}\right) \pm \sin t \sin \left(\frac{\pi}{6}\right)$		
A1: M1:	Uses correct algebra to find $x+y=2 \sqrt{3} \cos t$ Complete strategy of applying $\cos ^{2} t+\sin ^{2} t=1$ on a rearranged $x+y=" 2 \sqrt{3} \cos t$ ", $y=2 \sin t$ to achieve an equation in x and y only		
A1: C	Correctly proves $(x+y)^{2}+a y^{2}=b$ with both $a=3, b=12$, and no errors seen		

Question 14 Notes Continued:

Alt 1

M1: Apply in the same way as in the main scheme
M1: Apply in the same way as in the main scheme
A1: Uses correct algebra to find $(x+y)^{2}=(2 \sqrt{3} \cos t)^{2}$ or $(x+y)^{2}=12 \cos ^{2} t$
M1:
Complete strategy of applying $\cos ^{2} t+\sin ^{2} t=1$ on $(x+y)^{2}=(" 2 \sqrt{3} \cos t ")^{2}$ to achieve an equation in x and y only

A1:
Correctly proves $(x+y)^{2}+a y^{2}=b$ with both $a=3, b=12$, and no errors seen

