## Parametric equations Cheat Sheet

so far, we have only looked at functions given in two variables, $y$ and $x$. This is known as the cartesian equation of
We define the $x$ and $y$ coordinates separately, in terms of a third variable, $t$ :
$\quad x=p(t)$
$: \quad y=q(t)$
Each value of $t$ defines a point on the curve.
o develop a better understanding of how this works, let's look at the following curve defined parametrically:


## Converting between parametric and cartesian equations

to convert between parametric and cartesian equations, you must use substitution to eliminate the parameter. You also need to be able to relate the domain and range of a cartesian equation to its parametric counterpart. Remember that:

- The range of $f(x)$ is the range of $q(t)$

| a) Using $x=\ln (4-t)$, we start by making t the subject: | $\begin{aligned} & e^{x}=4-t \\ & \therefore \quad \begin{array}{l} t=4-e^{x} \end{array} \end{aligned}$ |
| :---: | :---: |
| Substituting into $y$ : | $\begin{aligned} & y=\left(4-e^{x}\right)-2 \\ & \Rightarrow y=2-e^{x} \end{aligned}$ |
| b) We use the domain/range properties of parametric functions to deduce the domain and range of $f(x)$ | The domain of $f(x)$ is the range of $\ln (4-t)$ for $t<3$. By a sketch or otherwise, you can deduce this is $x>0$. <br> The range of $f(x)$ is the range of $t-2$ for $t<3$. This will be $y<1$. |

When the parametric equations involve trigonometric functions, you may need to use trigonometric identities to onvert to cartesian form. Here are two examples showing how this is done in practic


```
Example 3: A curve C has parametric equations 
```

    Find a cartesian equation of the curve in the form \(y=f(x)\), stating its domain.
    | $\begin{array}{l}\text { a) We start by expanding } y \text { using the addition } \\ \text { formulae from Chapter } 7 \text { of Pure Year } 2 \text { : }\end{array}$ | $y=\sin (t) \cos \left(\frac{\pi}{6}\right)-\cos (t) \sin \left(\frac{\pi}{6}\right)$ |
| :--- | :--- |


| formulae from Chapter 7 of Pure Year 2: | $=\frac{\sqrt{3}}{2} \operatorname{sint}-\frac{1}{2} \cos t$ |
| :--- | :--- |


| $\begin{array}{l}\text { Using the result from the previous step and } \\ \text { substituting } x=2 \text { cost: }\end{array}$ | Since $x=2$ cost, $y=\frac{\sqrt{3}}{2}$ sint $-\frac{1}{4}$ |
| :--- | :--- |

ng $x=2$ cost
$\begin{array}{ll}\begin{array}{l}\text { Now we need to substitute out sint as it is the } \\ \text { only remaining term with } t \text { in it. We can use the }\end{array} & \left(\frac{x}{2}\right)=\operatorname{cost}:\left(\frac{x}{2}\right)^{2}=\cos ^{2} t\end{array}$
identity $\sin ^{2} t+\cos ^{2} t=1$ to do this. $\quad$ So $\sin ^{2} t=1-\left(\frac{x}{2}\right)^{2}$ and $\operatorname{sint}=\sqrt{1-\left(\frac{x}{2}\right)^{2}}$
Substituting this new expression for sint back into
the expression from the 2ns step
We look at the range of the
equation, $x=2$ cost, to find the domain of our
cartesian equation
Alternatively, you could also substitute $t=0$ and
$t=\pi$ into $x=2 \cos t$ to find the domain,

## Sketching parametric equation

Parametric curves are usually more difficult to sketch than curves given in cartesian form
To plot parametric curves, we need to construct a table of values and use it to sketch the curve.

```
Example 4: A curve is given by the parametric equations }x=\mp@subsup{t}{}{2},y
    Sketch the curve for -4\leqt\leq4.
```

    We start by constructing the following table and filling it in
    

Note that you can use as many or as little $t$ values in your table as you like. In this case using the more values if you feel the need.
Plotting our points then sketching the curve that goes through all of them:

Points of intersection
further problems will involve the use of coordinate geometry.
defined parametrically and functions given in cartesian form.
With such questions, the general procedure is to substitute your parametric equations into your cartesian equatio resulting in an equation for $t$ which should be solved The solutions to this equation represent the values of $t$ where the

| Example 5: Find the points of intersection of the parabola $x=t^{2}, y=2 t$ with the circle$x^{2}+y^{2}-9 x+4=0$ |  |
| :---: | :---: |
| Substituting $x=t^{2}, y=2 t$ into the circle: | $\begin{aligned} & \left(t^{2}\right)^{\prime}+(2 t)-9\left(t^{2}\right)+4=0 \\ & \Rightarrow-8 t^{2}+2 t+4=0 \end{aligned}$ |
| Solving the quadratic: | The solutions to this equation via the quadratic formula are $t=\frac{1+\sqrt{33}}{8}, t=\frac{1-\sqrt{33}}{8}$ |
| To find the points, we need to substitute these values of t back into the given parameterisation $x=t^{2}, y=2 t$. Doing so, starting with $t=\frac{1+\sqrt{33}}{8}$ | $\begin{aligned} & x=\left(\frac{1+\sqrt{33}}{8}\right)^{2}=\frac{17+\sqrt{33}}{32} \\ & y=2\left(\frac{1+\sqrt{33}}{8}\right)=\frac{1+\sqrt{33}}{4} \end{aligned}$ |
| Now with $t=\frac{1-\sqrt{33}}{8}$ | $\begin{aligned} & x=\left(\frac{1-\sqrt{33}}{8}\right)^{2}=\frac{17-\sqrt{33}}{32} \\ & y=2\left(\frac{1-\sqrt{33}}{8}\right)=\frac{1-\sqrt{33}}{4} \end{aligned}$ |
| Writing our solutions as coordinates: | $\therefore$ our points are $\left(\frac{17+\sqrt{3}}{32}, \frac{1+\sqrt{33}}{4}\right),\left(\frac{17-\sqrt{3}}{32}, \frac{1-\sqrt{33}}{4}\right)$ |

## Modeling with parametric equations

You need to be able to use your knowledge of parametric equations to solve problems involving real -life scenarios. The mathematical techniques used for such problems are no different to regular questions, but in order to succeed you nee or make sure you fully understand the scenario given in the question, so take some time to read through the question properly
echanics problems a a popular choice for modelling questions.


