Radians Cheat Sheet

Radians are simply another way to measure angles. In many areas of mathematics and physisc, , sing radians as opposed to
degrees turn out to Radians are simply another way to measure angles. In many areas of mathematics and physics, using radians as opposed
degrees turns out to be much more convenient. For example, the arc length formula which we will cover soon is reatly simplified by using radians

Using Radians
To convert between radians and degrees, you can use the fact that

- 1 radian $=\frac{180^{\circ}}{\tau}$

It helps to remember the following angles in radians:

- $30^{\circ}=\frac{\pi}{6} \quad$ - $90^{\circ}=$
- $45^{\circ}=\frac{\pi}{4} \quad$ - $180^{\circ}=\pi$
- $60^{\circ}=\frac{\pi}{3} \quad$ - $360^{\circ}=2 \pi$

You can be asked to sketch trigonometric functions giving your angles in radians, so you should be very efficient at converting between radians and degrees.

You also need to learn the exact value of certain trigonometric ratios given in radians:

- $\sin \left(\frac{\pi}{6}\right)=\frac{1}{2}$
- $\cos \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}$
- $\quad \tan \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{3}$
- $\sin \left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2}$
- $\quad \cos \left(\frac{\pi}{3}\right)=\frac{1}{2}$
- $\quad \tan \left(\frac{\pi}{3}\right)=\sqrt{3}$
- $\sin \left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}$
- $\cos \left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}$
- $\tan \left(\frac{\pi}{4}\right)=1$

Arc length
To find the arc length l of a sector of a circle, we can use the formula

$$
\begin{aligned}
& l=r \theta \\
& \text { where } r \text { is the radius of the circle and } \theta \text { is the angl } \\
& \text { contained in the sector, given in radians. }
\end{aligned}
$$

Areas

You need to be able to apply the above formulae to problems.
Example 1: In the diagram below, AB is the diameter of a circle centre O of radius rcm and $\angle B O C=$ radians. Given that the area of $\triangle C O B$ is equal to that of the shaded segment, show that $\theta+2 \sin \theta=\pi$.
Area $C O B=\frac{1}{2} r^{2} \sin \theta \quad$ (area of a triangle, $O C=O B=r$)
Shaded segment $=\frac{1}{2} r^{2}((\pi-\theta)-\sin (\pi-\theta))$
Equating: $\frac{1}{2} r^{2} \sin \theta=\frac{1}{2} r^{2}((\pi-\theta)-\sin (\pi-\theta))$

Notice that $\sin (\pi-\theta)=\sin (\theta)$,
dividing through by $\frac{1}{2} r^{2}$ and rearranging: $\sin \theta=\pi-\theta-\sin \theta$
$\therefore \theta+2 \sin \theta=\pi$ as required

Solving trigonometric equation

You also need to be able to solve trigonometric equations using radians. The method is exactly the same as with degrees, but you need to give your answers in radians.

- If the interval is given in radians, then you should leave your answers in radians.

Let's go through an example.
Example 2: Solve $8 \tan 2 x=7$ in the interval $0 \leq x \leq 2 \pi$
The interval is given in radians, so we must make sure we work in radians. Don't forget to switch
the radians mode on your calculator.
the radians mode on your calcula

$$
\begin{aligned}
& \tan 2 x=\overline{8} \\
& 2 x=\arctan \left(\frac{7}{8}\right)=0.719
\end{aligned}
$$

Using CAST or a graphical method, our solutions are:
$2 x=0.719, \pi+0.719$
$\Rightarrow 2 x=0.719,3.86$

$x=0.36,1.93$ are our final solutions
T
C

Sy

Small angle approximations

When θ is close to zero and measured in radians, we can use the following approximations:

$$
\begin{aligned}
& \quad \sin \theta \approx \theta \\
& \hline . \quad \cos \theta \approx 1-\frac{\theta}{2} \\
& \hline \quad \tan \theta \approx \theta
\end{aligned}
$$

We can see that around $x=0$, the graphs are almost identical. This explains why these approximations are suitable for x close to zero. There is no set range for which these approximations are to be used.
Example 3: When θ is close to zero, show that $\frac{\operatorname{tcos} 3 \theta-2+\sin \theta}{1-\sin 2 \theta} \operatorname{can}$ be rewritten as $9 \theta+2$
Inputting our approximations:
$\Rightarrow 4 \cos 3 \theta-2+5 \sin \theta \approx 4\left(1-\frac{\left(3 \theta^{2}\right)^{2}}{2}\right)-2+5 \theta=2+5 \theta-18 \theta^{2}$
$\Rightarrow 1-\sin 2 \theta \approx 1-2 \theta$
$\therefore \frac{4 \cos 3 \theta-2+5 \sin \theta \theta}{1-\sin 2 \theta} \approx \frac{2+5 \theta-18 \theta^{2}}{1-2 \theta}=\frac{(1-2 \theta)(2+9 \theta)}{1-2 \theta}=2+9 \theta$ as required.
Once you sub
desired resut.
Example 4: When θ is close to zero, find the approximate value of $\cos ^{4} \theta-\sin ^{4} \theta$.
$\Rightarrow \cos ^{4} \theta-\sin ^{4} \theta=\left(\cos ^{2} \theta+\sin ^{2} \theta\right)\left(\cos ^{2} \theta-\sin ^{2} \theta\right)$
$=(1)\left(\cos ^{2} \theta-\sin ^{2} \theta\right)$
$=(1)\left(\cos ^{2} \theta-\sin ^{2} \theta\right)$
difference of two squares using $\cos ^{2} \theta+\sin ^{2} \theta=1$

Edexcel Pure Year 2

Exam-style question
We will now go through an exam-style question where you can be expected to use what you have learnt so far
Example 5: The diagram shows the cross section $A B C D$ of a glass prism. $A D=B C=4 \mathrm{~cm}$ and both are at right ngles to $D C . A B$ is the arc of a circle, centre 0 and radius 6 cm . Given that $\angle A O B=2 \theta$ radians, and that the perimeter of the cross section is $2(7+\pi) \mathrm{cm}$
) Show that $(2 \theta+2 \sin \theta-1)=\frac{\pi}{3}$
b) Verify that $\theta=\frac{\pi}{6}$,
c) Find the area of the cross-section.
d) Show that when x is small,
the expression $\frac{\pi(2(1-\cos x)-\sin 2 x+\sin x-1)}{12 \tan x-12} \approx \frac{1}{2} \theta$

Perimeter $=4+4+D C+A B$
Using trigonometry, we can see that $D C=2(6 \sin \theta)$
\therefore Perimeter $=12 \sin \theta+8+12 \theta=2(7+\pi)$
Rearranging: $12 \theta+12 \sin \theta-6=2$
Reariding by 6 gives: $\quad 2 \theta+2 \sin \theta-1=\frac{\pi}{-2}$ as required

b) We just need to plug in $\theta=\frac{\pi}{-}$ to the $L H S$ and check it is equal to the RHS
$\Rightarrow 2\left(\frac{\pi}{6}\right)+2 \sin \frac{\pi}{6}-1=\frac{\pi}{3}+1-1=\frac{\pi}{3}=$ RHS $\operatorname{so} \theta=\frac{\pi}{6}$

Area of rectangle $\mathrm{ABCD}=4 \times 12 \sin \left(\frac{\pi}{6}\right)=24$
Area of segment $\mathrm{AB}=\frac{1}{2}(r)^{2}(2 \theta-\sin 2 \theta)=\frac{1}{2}(6)^{2}\left(\frac{\pi}{3}-\sin \frac{\pi}{3}\right)=18\left(\frac{\pi}{3}-\frac{\sqrt{3}}{2}\right)=6 \pi-9 \sqrt{3}$
\Rightarrow Area of cross section $=24-(6 \pi-9 \sqrt{3})=24+9 \sqrt{3}-6 \pi$
e) Starting with the numerator:
$\pi\left(2(1-\cos x)-\sin ^{2} x+\sin x-1\right) \approx \pi\left[2\left(1-\left(1-\frac{x^{2}}{2}\right)\right)-(x)^{2}+x-1\right]$
$\Rightarrow \pi\left[2\left(\left(\frac{x^{2}}{2}\right)\right)-(x)^{2}+x-1\right]=\pi\left[x^{2}-x^{2}+x-1\right]=\pi(x-1)$
Now considering the denominator:
$12 \tan x-12 \approx 12 x-12=12(x-1)$
$\therefore \frac{\pi\left(2(1-\cos x)-\sin ^{2} x+\sin x-1\right)}{12 \tan x-12}=\frac{\pi(x-1)}{12(x-1)}=\frac{\pi}{12}$
But in part b , we verified $\theta=\frac{\pi}{6}$.
$\frac{\pi}{12}=\frac{1}{2} \times \frac{\pi}{6}$ hence. $\frac{\pi\left(2(1-\cos x)-\sin ^{2} x+\sin x-1\right)}{122 \tan x-12} \approx \frac{1}{2} \theta$ as required.

