Vectors Cheat Sheet

This chapter builds upon the basic vectors you covered in Pure Year 1. We will extend our knowledge to 3 dimensions and learn to solve a greater range of problems.

It is important to realise that working in 3 -dimensions is very similar to working in 2 dimensions. The techniques you learnt in Pure Year 1 can also be applied to 3 dimensions.

3D Coordinates

With 3 dimensions, we now have a third axis, known as the z axis. As a result,

- \quad Points in 3 -dimensions are written as (x, y, z).

Representing vector

We can represent 3D vectors using column notation or the unit vectors along the x, y and z axe
The unit vectors, denoted i, j, k are: $i=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), \quad j=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right), \quad k=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$

- For any vector in 3D, $a \boldsymbol{i}+b \boldsymbol{j}+c \boldsymbol{k}=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ Using unit vectors

Finding distances

The use of Pythagoras Theorem to find distances in 3 D is quite similar to its use in 2 D .

- The distance from the origin to the point (x, y, z) is $\sqrt{x^{2}+y^{2}+z^{2}}$.
- The magnitude of a vector $\mathrm{a}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ is simply the distance from the origin to the point (x, y, z) and therefore is also equal to $\sqrt{x^{2}+y^{2}+z^{2}}$
- The distance between the points $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ is $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}$.

Example 1: Consider the vectors $a=\left(\begin{array}{l}1 \\ 2 \\ 4\end{array}\right)$ and $b=\left(\begin{array}{c}3 \\ -1 \\ 2\end{array}\right)$. Find $4 \boldsymbol{a}+8 \boldsymbol{b}$, writing
your answer in both column and ijk notation.
$4 \boldsymbol{a}=4\left(\begin{array}{l}1 \\ 2 \\ 4\end{array}\right)=\left(\begin{array}{l}4 \times 1 \\ 4 \times 2 \\ 4 \times 4\end{array}\right)=\left(\begin{array}{c}4 \\ 8 \\ 16\end{array}\right)$
$8 \boldsymbol{b}=8\left(\begin{array}{c}3 \\ -1 \\ 2\end{array}\right)=\left(\begin{array}{c}8 \times 3 \\ 8 \times-1 \\ 8 \times 2\end{array}\right)=\left(\begin{array}{c}24 \\ -8 \\ 16\end{array}\right)$
$\therefore 4 \boldsymbol{a}+8 \boldsymbol{b}=\left(\begin{array}{c}4 \\ 8 \\ 16\end{array}\right)+\left(\begin{array}{c}24 \\ -8 \\ 16\end{array}\right)=\left(\begin{array}{c}28 \\ 0 \\ 32\end{array}\right)$ in column notation.
In ijk notation, this is $28 \boldsymbol{i}+0 \boldsymbol{j}+32 \boldsymbol{k}=28 \boldsymbol{i}+32 \boldsymbol{k}$.
In general, you are free to use whichever notation you like. Column notation tends to be easier to follow and less tedious to write, however.

Unit vectors

A unit vector is any vector of magnitude 1 . If we have a vector a, then we can construct a unit vector in the direction of a , denoted as af, using the formula:

- $\hat{a}=\frac{a}{|a|}$, where $|a|$ is the magnitude of a.

Angles between axes

You can work out the angle between a vector $\mathrm{a}=(x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k})$ and any of the axes using the following formulae:

- $\quad \cos \theta_{x}=\frac{x}{|a|}$
- $\quad \boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}_{y}=\frac{y}{|a|}$
$\theta_{x}, \theta_{y}, \theta_{z}$ represent the angles
$\theta_{x}, \theta_{y}, \theta_{z}$ represent the angles
a makes with the x, y and z axes respectively.
- $\quad \boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}_{z}=\frac{z}{|a|}$

Example 2: Given that $\boldsymbol{c}=\left(\begin{array}{c}3 \\ -4 \\ -2\end{array}\right)$,
a) Find the unit vector in the direction of \boldsymbol{c}
b) Find the angle \boldsymbol{c} makes with the x, y and z axes.
a)
$\hat{c}=\frac{c}{|c|}$
$|c|=\sqrt{(3)^{2}+(-4)^{2}+(-2)^{2}}=\sqrt{29}$
$\therefore \hat{c}=\frac{1}{\sqrt{29}}\left(\begin{array}{c}3 \\ -4 \\ -2\end{array}\right)$
b) $\quad \cos \theta_{x}=\frac{x}{|c|}=\frac{3}{\sqrt{29}} \Rightarrow \theta_{x}=\cos ^{-1}\left(\frac{3}{\sqrt{29}}\right)=56.1^{\circ}=$ angle with x-axis.
$\cos \theta_{y}=\frac{y}{|c|}=\frac{-4}{\sqrt{29}} \Rightarrow \theta_{y}=\cos ^{-1}\left(\frac{-4}{\sqrt{29}}\right)=138^{\circ}=$ angle with y -axis.
$\cos \theta_{z}=\frac{z}{|c|}=\frac{-2}{\sqrt{29}} \Rightarrow \theta_{z}=\cos ^{-1}\left(\frac{-2}{\sqrt{29}}\right)=111.8^{\circ}=$ angle with z -axis.

Solving geometric problems

You need to be able to apply everything from AS and A2 vectors to geometric problems in 3 dimensions. The following facts tend to be useful for such questions:

- If we have $a \boldsymbol{i}+b \boldsymbol{j}+c \boldsymbol{k}=u \boldsymbol{i}+\boldsymbol{v} \boldsymbol{j}+w \boldsymbol{k}$, then we can compare coefficients on both sides of the equation giving us $a=u, b=v, c=w$.
- If the point P divides the line segment $A B$ in the ratio $\lambda: \mu$, then

$$
\overrightarrow{O P}=\overrightarrow{O A}+\frac{\lambda}{\lambda+\mu} \overrightarrow{A B}
$$

Drawing a big diagram is always helpful for geometric problems. We will go through an example showcasing the typical style of such questions.

Edexcel Pure Year 2
Example 4: The points A and B have position vectors $10 \mathbf{i}-23 \mathbf{j}+10 \mathbf{k}$ and $\mathrm{p} \mathbf{i}+14 \mathrm{j}-22 \mathbf{k}$ respectively, relative to a fixed origin O , where p is a constant. Given that $\triangle O A B$ is isosceles, find three possible positions of the point B.

We start with a diagram. This helps us to understand why there are three possible positions for B.

The first possible position is when $O B$ and $O A$ are equal, the second when $O A$ and $A B$ are equal and the third is when sides $O B$ and $A B$ are equal. To find each position vector, we can equate the lengths of the two sides that are equal.
$B=\left(\begin{array}{c}p \\ 14 \\ -22\end{array}\right)$. so $\overrightarrow{A B}=\left(\begin{array}{c}p \\ 14 \\ -22\end{array}\right)-\left(\begin{array}{c}10 \\ -23 \\ 10\end{array}\right)=\left(\begin{array}{c}p-10 \\ 37 \\ -32\end{array}\right)$
For $B_{1}: \overrightarrow{O B}=\overrightarrow{O A} ; \sqrt{(p-10)^{2}+14^{2}+(-22)^{2}}=\sqrt{(10)^{2}+(-23)^{2}+(10)^{2}}=27$
$\Rightarrow p^{2}+680=27^{2} \therefore p= \pm 7 \quad$ (squaring both sides and rearranging)

For $B_{2}: \overrightarrow{O A}=\overrightarrow{A B} ; \sqrt{(10)^{2}+(-23)^{2}+(10)^{2}}=\sqrt{(p-10)^{2}+(37)^{2}+(-32)^{2}}$ $\Rightarrow 27^{2}=(p-10)^{2}+(37)^{2}+(-32)^{2} \quad$ (squaring both sides and rearranging) $\Rightarrow 27^{2}=(p-10)^{2}+2493$.
This results in a quadratic where the discriminant is less than 0 , so there are no real solutions for p here.

For $B_{3}: \overrightarrow{O B}=\overrightarrow{A B} ; \quad \sqrt{(p)^{2}+(14)^{2}+(-22)^{2}}=\sqrt{(p-10)^{2}+(37)^{2}+(-32)^{2}}$
$\Rightarrow p^{2}+680=(p-10)^{2}+2393 \quad$ (squaring both sides and collecting like terms)
$\Rightarrow 20 p=1813 \therefore p=\frac{1813}{20}$.
(rearranging and finding p)

So our three possible position vectors of B are

$$
\left(\begin{array}{c}
7 \\
14 \\
-22
\end{array}\right),\left(\begin{array}{c}
-7 \\
14 \\
-22
\end{array}\right) \text { and }\left(\begin{array}{c}
\frac{1813}{20} \\
14 \\
-22
\end{array}\right)
$$

