Integration Cheat Sheet

Integration is the inverse of differentiation. We can think of integration as a mathematical tool that allows us to find

Finding Areas
$\int_{a}^{b} y d x$ represents the area bounded between the curve \longrightarrow $y=f(x)$, the x-axis and the lines $x=a$ and $x=b$.
When a function is given parametrically, the area under the curve is given by $\int_{a}^{b}\left[y \frac{d x}{d}\right] d t$. Remember that a and b are limits given in terms of t, and the integration is done with respect to t
You need to be able to recognise that $\lim _{\delta x \rightarrow 0}^{b} \sum^{b} f(x) \delta x=\int_{a}^{b} f(x) d x$

Solving integrals involving trigonometric equations

You might come across an expression involving trigonometric func
the results above. For example, \int sin$^{3} x$ d x can't be found directly.
To tackle problems of this sort, you need to manipulate the expression into a form you can integrate. This is why it is crucial you are familiar with all of the identities you encountered in chapters 6 and 7 . Below is an example showcasing we do this in practice.

Example 1: Evaluate $\int \sin ^{2} x \mathrm{dx}$
$\int \sin ^{2} x d x=\int\left(1-\cos ^{2} x\right) d x=\int 1 d x-\int \cos ^{2} x d x$.
But $\cos 2 x=2 \cos ^{2} x-1, \quad$ so $\cos ^{2} x=\frac{\cos ^{2} x+1}{2}$
. $\int \cos ^{2} x d x=\frac{1}{2} \int \cos 2 x+1 d x=\frac{1}{2}\left[\frac{1}{2} \sin 2 x+x\right]=\frac{1}{4} \sin 2 x+\frac{1}{2} x$
Using the double angle formulae
cos $2 x=2 \cos ^{2} x-1$
\qquad

Reverse Chain Rule
Some complicated expressions can be integrated very easily if they are of one of the forms below
[1] $\int f^{\prime}(x)[f(x)]^{n} d x=\frac{f(x) n+1}{n+1}+c$.
e.g. $\int \sin ^{400} x \cos x d x=\frac{\sin ^{401} x}{401}+c$
[2] $\int \frac{f^{\prime}(x)}{f(x)} d x=\ln |f(x)|+c$
e.g. $\int \frac{2 x}{x^{2}+42} d x=\ln \left|x^{2}+42\right|+c$

$$
\int \frac{\sin x \cos x}{2 \cos 2 x+1} d x=\int \frac{\frac{1}{8} \sin 2 x}{2 \cos 2 x+1} d x=\frac{1}{2}\left[-\frac{1}{2} \ln |2 \cos 2 x+1|\right]+c
$$

Remember that you must adjust for any variation in constants. In example 2 of rule 1 , we had to multiply our answer by $\frac{1}{3}$ since the differential of $\left(x^{3}+4\right)^{5}$ is $3 x^{2}$, not x^{2}.
While it is strue you do not necessarily need to know the above rules, it is still very worthwhile for you to take time to learn to apply them because they can greatly simplify otherwise difificult integrals.

Using partial fractions

You could also be asked to integrate an expression involving a fraction with more than one inear factor in the denominator. Take for example, the expression $\frac{11 x^{2}+14 x+5}{(x+1)^{2}(2 x+1)}$. This cannot be integrated directly so we need to simplify it, which is where partial fractions come in handy. Using partial fractions, we can rewrite this as $\frac{4}{x+1}-\frac{2}{(x+1)^{2}}+\frac{3}{(2 x+1)}$

Now, each of the ab:
out the integration:
$\int \frac{11 x^{2}+14 x+5}{(x+1)^{2}(2 x+1)} d x=\int \frac{4}{x+1}-\frac{2}{(x+1)^{2}}+\frac{3}{(2 x+1)} d x$
$=4 \ln |x+1|+\frac{2}{x+1}+\frac{3}{2} \ln |2 x+1|+c$
Such questions are often worth upwards of 6 marks and are heavily reliant on your ability to use partial fractions well. The integration is mostly straight forward and does not require much extra work outside of applying the standard results, but it is the partial fractions procedure that can be a little tedious.

Trapezium Rule

In some cases, you might not be able to integrate a function algebraically. We can instead use a numerical

The concept is simple: we divide the area required into vertical 'strips' which each form trapezia, find the
The concept is simple: we divide the area required into vertical 'strips' which each form trapezia, find the
approximate area of each strip (using the area of a trapezium formula) and finally add them all up giving us the total area. The more strips we use with the trapezium rule, the more accurate our estimate is. The formula for the trapezium rule is:

$$
\int_{a}^{b} y \mathrm{~d} x \approx \frac{1}{2} h\left\{\left(y_{0}+y_{n}\right)+2\left(y_{1}+y_{2}+\ldots+y_{n-1}\right)\right\} \text {, where } h=\frac{b-a}{n}
$$

You could also be asked to determine whether your estimate is an overestimate or an underestimate. To do so you must look at the graph of the curve in the region you are estimating and determine whether it is concave or convex.

Another common question is to find the percentage error of your estimate. To find this, you can use the formula for percentage error

Here, "exact"" represents the exact value of the integral, which you would need to find algebraically. the integral. This is best illustrated by an example:

Example 3: Find $\int_{6}^{20} \frac{8 x}{\sqrt{4 x+1}} d x$ using the substitution $u^{2}=4 x+1$
$\begin{aligned} & \text { [1] Differentiate } u^{2}=4 x+1 \text { to find dx in terms of du: You will need to use } \\ & \text { implicit differentiation here. You could instead make u the subiect by taking the }\end{aligned} 2 u \frac{d u}{d x}=4 \quad \therefore \frac{d x}{d u}=\frac{u}{2}$ so we can say $d x=\frac{u}{2} d u$ mplicitt differentitation here. You could intead make u the subiect by taking the
square root of both sides of the equation before differentiating, but the scuarar root of both sides of the equation before
differentiation becomes messy and less convenient.
tr] we on
[2] We now need to substitute out al of of the xererms. Using $u^{2}=4 x+1$, we can
see that $8 x=2 u^{2}-2$. We also replace $d x$ with $\frac{2}{2} d x$
$\int \frac{2 u^{2}-2}{\sqrt{u^{2}}} \cdot \frac{u}{2} d u=\int u^{2}-1 d u$
[3] We now need
$4 x+1$ to do this:
At $x=6, u=\sqrt{4(6)+1}=\sqrt{25}=5$
[4] Firally, our " x " integral has been completely transformed into a " u " integral so
At $x=20, u=\sqrt{4}(20)+1=\sqrt{11}=9$
$\int_{5}^{9} u^{2}-1 d u=\left[\frac{u^{3}}{3}-u\right]_{5}^{9}=[234]-\left[\frac{110}{3}\right]=\frac{592}{3}$
tere are some helpful pointers regarding the substitution method:

- In the exam, you will often be told which substitution to use. If not, then a good rule of thumb is to "try whatever is inside brackets or square root". For example, if you are given $\int x \sqrt{3 x}+4 d x$, a good choice of substitution would be $u=3 x+4$. Be aware that "his "rule" may not always work, but it it helpfull to try if you are unsure what to substitute You might occasionally find it difiticult to spot a substlo not
simply try a couple and see whether they are helpful or not. simply try a couple and see whether they are helpfutu or not.
If you decide to use a substitution when evaluating an indefinite integral, don't forget to give your final answer in terms
of the variable you started with!

Integration by Parts

When we want to integrate an expression that is a product of two functions, we
product rule for differentiation; the idea is the same. The formula is as follows:

$$
\int u \frac{\mathrm{~d} v}{\mathrm{~d} x} \mathrm{~d} x=u v-\int v \frac{\mathrm{~d} u}{\mathrm{~d} x} \mathrm{~d} x \quad \text { or, if we are using limits: } \int_{\mathrm{a}}^{\mathrm{b}} u \frac{\mathrm{~d} v}{\mathrm{~d} x} \mathrm{~d} x=(u v)_{\mathrm{a}}^{\mathrm{b}}-\int_{\mathrm{a}}^{\mathrm{b}} v \frac{\mathrm{~d} u}{\mathrm{~d} x} \mathrm{~d} x
$$

When using this method, we need to pick one of our functions to be $\frac{d v}{d x}$ and the other to be u. This choice is crucial and should be made based on the "LATE" rule:

Whichever function in your expression is easier to integrate should be selected as $\frac{d v}{d x}$. Once you have made this choice, you can proceed to using the formula. Here are some key points to keep in mind when integrating by parts:

With some questions you may need to apply the 'by parts' formula more than once to get to the final answer. An example of this would be if you were asked to evaluate $\int x^{2} e^{x} d x$
When evaluating $\int \ln x d x$ in particular, you need to use 'by parts". To do so, let $\frac{d v}{d x}=1$.

Solving Differential Equations

Any equation involving derivatives is known as a differential equation. The order of a differential equation is the order of the ighest derivative in the equation. You need to be able to solve differential equations of first order, using a method known as

$$
\text { When } \frac{d y}{d x}=f(x) g(y) \text {, we can write } \int \frac{1}{g(y)} d y=\int f(x) d x
$$

Keep in mind that once we carry out the above integration, there will be an unknown constant of integration left over. This is
 differential equation is a function!
The process is always the same when it comes to solving differential equations and can be summarised as:

$$
\begin{aligned}
& \text { Rearrange the equation you are given into the form } \frac{d y}{d x}=f(x) g(y) \text {. } \\
& \text { Evaluate } \int \frac{1}{g(v)} d y=\int f(x) d x \text {, using your knowledge of integration. } \\
& \text { Add the constant of integration and rearrange your genera solution into the required form (this is given to you in } \\
& \text { the question). } \\
& \text { If you need to find the particular solution, substitute the given boundary condition into your general solution and } \\
& \text { find your unknown constant. }
\end{aligned}
$$

