Numerical methods Cheat Sheet

Some mathematical equations that form in the real world turn out to be very difificult to solve; finding an
exact solution is ither very time consuming or impossible using techniques we already know. Take for example, the equation $3 l n\left|2 x^{2}\right|+4 \cos x-e^{x}=0$. This cannot be solved using any techniques you have learnt so far. We can instead use numerical methods to find approximations to the solutions of such equations.
Locating roots
A root of
x-axis.
If $f(x)$ is continuous on the interval $[a, b]$ and $f(a)$ has an opposite sign to $f(b)$, then $f(x)$ has at least one root in this interval.
When we say $f(x)$ has to be continuous on an interval, this just means that when graphed, the function is unbroken. In other words, you could trace the function with a pen without needing to lift your pen off the paper.
Let's look at an example to clarify why the above bullet point makes sense:

Changes of sign and roots

s a change of sign, that does in an interval, that does not necessarily mean a root does not exist. Also, if there wary of


```
-Here, there are two roots between }a\mathrm{ and }b\mathrm{ but
```

Case 2: Multiple roots with a sign change There can be mo
change in sign.

```
```

There are thre roots betwen

```
```

```
```

There are thre roots betwen

```
```


When vertical asymptotes are present, a sign change When vertical asymptotes are present, a
will occur without there being any root.

```
(b) have opposing sign
```


sing teration
If we wish to find the roots of an equation $f(x)=0$, we can use iterative metho
To solve an equation of the form $f(x)=0$, rearrange the equation into the form $x=g(x)$ and use the iterative formula $x_{n+1}=g\left(x_{n}\right)$.
Kou must be careful when using an iterative method as not all iterations will converge to a root. Sometimes, successive terations will move away from the root quickly. This is known as divergence.

Example 2: $f(x)=x^{3}-3 x^{2}-2 x+5$ a) Show that $f(x)=0$ has a root α in the interval $3<x<4$ b) Show that the equation $f(x)=0$ can be written as $x=\sqrt{\frac{x^{x-2 x+5}}{3}}$ c) Use the iterative formula $x_{n+1}=g\left(x_{n}\right)$ to find the value of x_{1}, x_{2} and x_{3}, with (i) with $x_{0}=1.5$, (i) with $x_{0}=4$.	
a) We must calculate $f(3)$ and $f(4)$ and show that there is a change in sign.	$\begin{aligned} & f(3)=3^{3}-3\left(3^{2}\right)-2(3)+5=-1 \\ & f(4)=4^{3}-3\left(4^{2}\right)-2(4)+5=13 \\ & \text { As there is a change in sign between } x=3 \text { and } x=4, \end{aligned}$ this proves that a root lies in this interval.
b) With such questions, the clue is in what you want to show. The expression is square rooted, which tells us we want to first make x^{2} the subject.	$f(x)=0 \Rightarrow x^{3}-3 x^{2}-2 x+5=0$
Making x^{2} the subject.	$\begin{aligned} & \Rightarrow 3 x^{2}=x^{3}-2 x+5 \\ & \Rightarrow x^{2}=\frac{x^{3}-2 x+5}{3} \end{aligned}$
Square rooting:	$\therefore x=\sqrt{\frac{x^{3}-2 x+5}{3}}$
c) The iterative formula we need to use is $x_{n+1}=\sqrt{\frac{x_{x_{n}}^{2}-2 x_{n}+5}{3}}$.	
(i) $x_{0}=1.5$	(ii) $x_{0}=4$
$x_{1}=\sqrt{\frac{1.50-2(1.5)+5}{3}}=1.3385$.	$x_{1}=\sqrt{\frac{40-2(t)+5}{3}}=4.5092$.
$x_{2}=\sqrt{\frac{1.389,5,-2(1,3355)+5}{2}}=1.2544 . .$	
$x_{3}=\sqrt{\frac{1254+3,-2(1254+4)+5}{3}}=1.2200 . .$	
As you can see, when we used $x_{0}=1.5$, our iterations slowly converged. With $x_{0}=4$ however, each successive iteration moved further away, indicating divergence. This shows the effect that an unsuitable starting value can have.	

There are two ways in which an iteration can converge:

Newton-Raphson method

An
is:

- $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$

This method uses tangent lines to find accurate approximations of roots. The starting values must be chosen carefully with the Newton-Raphson method. Usually this will be given to you, but if not then you need to consider the following two points:

If the starting value, x_{0}, is near a turning point then the method can converge on a root quite slowly, as the tangent line will be far from the x-axis.

If the starting value, $x_{\text {, }}$ is at a turning point then the method will fail completely as the formula would result in division
by 0 , which is undefined. by 0 , which is undefined.

The two graphs below illustrate each of the above cases:

Example 4: $f(x)=2 \sec x+2 x-3,-\frac{\pi}{2}<x<\frac{\pi}{2}$ where x is i r radians.
Given that $f(x)=0$ has asolution α, in the interval $0.4<x<0.5$, take 0.4 as a first approximation to and apply the
Newton-Raohson procedure to obtain a second approximation. Give your answer to d decimal places.

Applications to modelling
Vou also need to be able to apply your knowledge of numerical methods to questions involving models of real-life scenarios.

Example 5: The future world ranking position of $w(x)=-\frac{1}{50} x^{4}$ where x is the number of months since the begin The diagram shows the graph with equation $y=$ maximum at A and local minimum at B.	is player during a calendar year can be modelled by the function. $x^{3}-7 x^{2}+17 x+40, \quad 0 \leq x \leq 12$ of the year. .The graph has a local
a) Find $w^{\prime}(x)$. b) Show that the player reaches a minimum rank c) Show that the turning points of the graph corre	tween 8.3 and 8.4 months after the beginning of the year d to the equation $x= \pm \sqrt{\frac{10}{21}\left(\frac{2}{25} x^{3}+14 x-17\right)}$.
a) We use the formula to find the first few iterations	$w^{\prime}(x)=-\frac{4}{50} x^{3}+\frac{21}{10} x^{2}-14 x+17$
b) We want to show there is a turning point between $x=8.3$ and $x=8.4$. This means we want to show $w^{\prime}(x)=0$ has a root α in the interval (8,3, 8.4) Using the technicue from example 1 :	$\begin{aligned} & w^{\prime}(8.3)=-\frac{4}{5}(8.3)^{3}+\frac{21}{10}(8.3)^{2}-14(8.3)+17=-0.27396 \\ & w^{\prime}(8.4)=-\frac{4}{50}(8.4)^{3}+\frac{21}{10}(8.4)^{-}-14(8.4)+17=0.15968 \end{aligned}$ There is a change in sign between $x=8.3$ and $x=8.4$ so a root must ie i it this interval, which means that the player reaches a minimum ranking between 8.3 and 8.4 months. We know the point is a minimum since the graph only has a minimum in this range.
c)	$\begin{aligned} & w^{\prime}(x)=-\frac{4}{5 x^{3}+\frac{21}{10} x^{2}-14 x+17=0} \\ & \frac{21}{1 x^{2}}=\frac{2}{25} x^{3}+14 x-17 \\ & x^{2}=\frac{10}{21}\left(\frac{2}{25} x^{3}+14 x-17\right) \\ & x= \pm \sqrt{\frac{10}{21}\left(\frac{2}{25} x^{3}+14 x-17\right)} \end{aligned}$

