Second Year Assignment Test 12 Version 0

1. Find general solutions to the differential equations $\cos ^{2} x \frac{d y}{d x}=y^{2} \sin ^{2} x$. Give your answers in the form $y=f(x)$
2. A fighter jet training programme takes only the top 2.5% of candidates on a test. Given that the scores can be modelled using a normal distribution with mean 80 and standard deviation 4, find the score necessary to get on the programme.
3. At time t seconds, a particle P has position vector $r m$ with respect to a fixed origin O, where

$$
r=4 t^{2} \boldsymbol{i}+\left(24 t-3 t^{2}\right) \boldsymbol{j}, \quad t \geq 0
$$

a) Find the speed of P when $t=2$
b) Show that the acceleration of P is a constant and find the magnitude of this acceleration.

Second Year Assignment Test 12 Version \mathbf{P}

1. Find general solutions to the differential equations $\cos ^{2} x \frac{d y}{d x}=\frac{1}{2} y^{2} \sin ^{2} x$. Give your answers in the form $y=f(x)$
2. A fighter jet training programme takes only the top 3% of candidates on a test. Given that the scores can be modelled using a normal distribution with mean 80 and standard deviation 4, find the score necessary to get on the programme.
3. At time t seconds, a particle P has position vector $r m$ with respect to a fixed origin O, where

$$
r=8 t^{2} \boldsymbol{i}+\left(48 t-6 t^{2}\right) \boldsymbol{j}, \quad t \geq 0
$$

a) Find the speed of P when $t=2$
b) Show that the acceleration of P is a constant and find the magnitude of this acceleration.

Second Year Assignment Test 12 Version Q

1. Find general solutions to the differential equations $\cos ^{2} x \frac{d y}{d x}=\frac{1}{3} y^{2} \sin ^{2} x$. Give your answers in the form $y=f(x)$
2. A fighter jet training programme takes only the top 1.5% of candidates on a test. Given that the scores can be modelled using a normal distribution with mean 80 and standard deviation 4 , find the score necessary to get on the programme.
3. At time t seconds, a particle P has position vector $r m$ with respect to a fixed origin O, where

$$
r=28 t^{2} \boldsymbol{i}+\left(168 t-21 t^{2}\right) \boldsymbol{j}, \quad t \geq 0
$$

a) Find the speed of P when $t=2$
b) Show that the acceleration of P is a constant and find the magnitude of this acceleration.

Second Year Assignment Test 12 Version R

1. Find general solutions to the differential equations $\cos ^{2} x \frac{d y}{d x}=\frac{1}{a} y^{2} \sin ^{2} x$. Give your answers in the form $y=f(x)$
2. A fighter jet training programme takes only the top 0.5% of candidates on a test. Given that the scores can be modelled using a normal distribution with mean 80 and standard deviation 4, find the score necessary to get on the programme.
3. At time t seconds, a particle P has position vector $r m$ with respect to a fixed origin O, where

$$
r=2 t^{2} \boldsymbol{i}-\left(12 t-1.5 t^{2}\right) \boldsymbol{j}, \quad t \geq 0
$$

a) Find the speed of P when $t=2$
b) Show that the acceleration of P is a constant and find the magnitude of this acceleration.

Answers version 0

$1 y=\frac{-1}{\tan x-x+c}$
2. 87.8
3. a) $20 \mathrm{~ms}^{-1}$
b) $10 \mathrm{~ms}^{-2}$

Answers version P

$1 y=\frac{-2}{\tan x-x+c}$
2. 87.5
$\begin{array}{ll}\text { 3. a) } 40 \mathrm{~ms}^{-1} & \text { b) } 20 \mathrm{~ms}^{-2}\end{array}$

Answers version \mathbf{Q}

$1 y=\frac{-3}{\tan x-x+c}$
2. 88.7
3. a) $140 m s^{-1}$
b) $70 \mathrm{~ms}^{-2}$

Answers version R

$1 y=\frac{-a}{\tan x-x+c}$
2. 90.3
3. a) $10 \mathrm{~ms}^{-1}$
b) $5 \mathrm{~ms}^{-2}$

