Second Year Assignment Test 10 Version 0

1. The Venn diagram shows the probabilities of members of a social club taking part in charitable activities.
A represents taking part in an archery competition R represents taking part in a raffle
F represents taking part in a fun run
The probability that a member takes part in the archery competition or the raffle is 0.6
a) i) Find the value of x
ii) Find the value of y

b) Show that events R and F are not independent.
2. Find $\int x^{2} \cos x d x$
3. A particle is projected with velocity $(8 \boldsymbol{i}+10 \boldsymbol{j}) \mathrm{ms}^{-1}$ from a point O at the top of a cliff and moves freely under gravity. Six seconds after projection, the particle strikes the sea at the point S. Calculate
a) the horizontal distance between O and S
b) the vertical distance between O and S

At time T seconds after projection, the particle is moving with velocity $(8 \boldsymbol{i}-14.5 \boldsymbol{j}) \mathrm{ms}^{-1}$.
c) Find the value of T and the position vector, relative to O , of the particle at this instance.

Second Year Assignment Test 10 Version P

1. The Venn diagram shows the probabilities of members of a social club taking part in charitable activities.
A represents taking part in an archery competition
R represents taking part in a raffle
F represents taking part in a fun run
The probability that a member takes part in the archery competition or the raffle is 0.5
a) i) Find the value of x
ii) Find the value of y

b) Show that events R and F are not independent.
2. Find $\int 2 x^{2} \cos 3 x d x$
3. A particle is projected with velocity $(16 \boldsymbol{i}+20 \boldsymbol{j}) \mathrm{ms}^{-1}$ from a point O at the top of a cliff and moves freely under gravity. Six seconds after projection, the particle strikes the sea at the point S. Calculate
a) the horizontal distance between O and S
b) the vertical distance between O and S

At time T seconds after projection, the particle is moving with velocity $(16 \boldsymbol{i}-14.5 \boldsymbol{j}) \mathrm{ms}^{-1}$. c) Find the value of T and the position vector, relative to O , of the particle at this instance.

Second Year Assignment Test 10 Version Q

1. The Venn diagram shows the probabilities of members of a social club taking part in charitable activities.
A represents taking part in an archery competition
R represents taking part in a raffle
F represents taking part in a fun run
The probability that a member takes part in the archery competition or the raffle is $\frac{36}{55}$
a) i) Find the value of x
ii) Find the value of y

b) Determine whether or not events R and F are independent.
2. Find $\int 2 x^{2} \cos x d x$
3. A particle is projected with velocity $(4 \boldsymbol{i}+5 \boldsymbol{j}) m s^{-1}$ from a point O at the top of a cliff and moves freely under gravity. Six seconds after projection, the particle strikes the sea at the point S. Calculate
a) the horizontal distance between O and S
b) the vertical distance between O and S

At time T seconds after projection, the particle is moving with velocity $(4 \boldsymbol{i}-14.6 \boldsymbol{j}) \mathrm{ms}^{-1}$. c) Find the value of T and the position vector, relative to O , of the particle at this instance.

Second Year Assignment Test 10 Version R

1. The Venn diagram shows the probabilities of members of a social club taking part in charitable activities.
A represents taking part in an archery competition
R represents taking part in a raffle
F represents taking part in a fun run
The probability that a member takes part in the archery competition or the raffle is $\frac{36}{55}$
a) i) Find the value of x
ii) Find the value of y

b) Show that events R and F are not independent.
2. Find $\int 2 x^{2} \cos 2 x d x$
3. A particle is projected with velocity (10i)ms ${ }^{-1}$ from a point O at the top of a cliff and moves freely under gravity. Six seconds after projection, the particle strikes the sea at the point S. Calculate
a) the horizontal distance between O and S
b) the vertical distance between O and S

At time T seconds after projection, the particle is moving with velocity $(10 \boldsymbol{i}-29.4 \boldsymbol{j}) \mathrm{ms}^{-1}$. c) Find the value of T and the position vector, relative to O , of the particle at this instance.

Answers Version 0

1 a) $x=0.15, y=0.3$
b) $p(F$ and $R)=0.15 \quad p(F) \times p(R)=0.18 \quad p(F$ and $R) \neq p(F) \times p(R)$
2. $x^{2} \sin x+2 x \cos x-2 \sin x+c$
3. a) 48 m
b) 120 m (2 s.f.)
c) $\mathrm{T}=2.5 \mathrm{~s}, \boldsymbol{r}=\left(20 \boldsymbol{i}-\frac{45}{8} \boldsymbol{j}\right) m$

Answers Version P

1 a) $x=0.05, y=0.4$
b) $p(F$ and $R)=0.05 \quad p(F) \times p(R)=0.135 \quad p(F$ and $R) \neq p(F) \times p(R)$
2. $\frac{2}{3} x^{2} \sin 3 x+\frac{4}{9} x \cos 3 x-\frac{4}{27} \sin 3 x+c$
3. a) 96 m
b) 56 m (2 s.f.)
c) $\mathrm{T}=3.5 \mathrm{~s}, \boldsymbol{r}=(56 \boldsymbol{i}+9.7 \boldsymbol{j}) \mathrm{m}$

Answers Version Q

1 a) $x=\frac{9}{44^{\prime}} \mathrm{y}=\frac{27}{110}$
b) $p(F$ and $R)=\frac{9}{44} \quad p(F) \times p(R)=\frac{9}{20} \times \frac{5}{11}=\frac{9}{44} \quad p(F$ and $R)=p(F) \times p(R), \therefore$ independent
2. $2 x^{2} \sin x+4 x \cos x-4 \sin x+c$
3. a) 24 m
b) 150 m (2 s.f.)
c) $\mathrm{T}=2 \mathrm{~s}, \boldsymbol{r}=(8 \boldsymbol{i}-9.6 \boldsymbol{j}) \mathrm{m}$

Answers Version R

1 a) $\mathrm{x}=\frac{9}{44^{\prime}} \mathrm{y}=\frac{27}{110}$
b) $p(F$ and $R)=\frac{9}{44} \quad p(F) \times p(R)=\frac{9}{20} \times \frac{5}{11}=\frac{9}{44} \quad p(F$ and $R)=p(F) \times p(R), \therefore$ independent
2. $x^{2} \sin 2 x+x \cos 2 x-\frac{1}{2} \sin 2 x+c$
3. a) 60 m
b) 180 m (2 s.f.)
c) $\mathrm{T}=3 \mathrm{~s}, \boldsymbol{r}=(30 \boldsymbol{i}-44 \boldsymbol{j}) m$

