Second Year Assignment Test 5 version O

1. Use the binomial expansion to expand $\left(1 - \frac{1}{2}x\right)^{\frac{1}{2}}$, |x| < 2 in ascending powers of x, up to and including the term in x^3 , simplifying each term.

2. An object is projected from a fixed origin O with velocity $(4i + 5j) ms^{-1}$. The particle moves freely under gravity and passes through the point P with position vector k(i - j) m, where k is a positive constant.

a) Find the value of k correct to 2 s.f.b) Find:

i) the speed of the object at the instant when it passes through P correct to 2 s.f.

ii) the angle of motion of the object at the instant when it passes through P correct to 2 s.f.

3. The random variable X can take any value from 1 to 50. Given that X has a discrete uniform distribution, find:

a) P(X = 1)
b) P(X ≥ 28)
c) P(13 < X < 42)

Second Year Assignment Test 5 version P

1. Use the binomial expansion to expand $\left(1+\frac{1}{2}x\right)^{\frac{1}{2}}$, |x| < 2 in ascending powers of x, up to and including the term in x^3 , simplifying each term.

2. An object is projected from a fixed origin O with velocity $(3i + 6j) ms^{-1}$. The particle moves freely under gravity and passes through the point P with position vector k(i - j) m, where k is a positive constant.

a) Find the value of k correct to 2 s.f.

b) Find:

i) the speed of the object at the instant when it passes through P correct to 2 s.f.ii) the angle of motion of the object at the instant when it passes through P correct to 2 s.f.

3. The random variable X can take any value from 1 to 50. Given that X has a discrete uniform distribution, find:

a) P(X = 2) b) P(X ≥ 29) c) P(10 < X < 40)

Second Year Assignment Test 5 version Q

1. Use the binomial expansion to expand $\left(1 + \frac{1}{4}x\right)^{\frac{1}{2}}$, |x| < 2 in ascending powers of x, up to and including the term in x^3 , simplifying each term.

2. An object is projected from a fixed origin O with velocity $(7i + 7j) ms^{-1}$. The particle moves freely under gravity and passes through the point P with position vector k(i - j) m, where k is a positive constant.

a) Find the value of k

b) Find:

i) the speed of the object at the instant when it passes through P correct to 2 s.f.ii) the angle of motion of the object at the instant when it passes through P correct to 2 s.f..

3. The random variable X can take any value from 1 to 50. Given that X has a discrete uniform distribution, find:

a) P(X = 8)b) $P(X \ge 38)$ c) P(1 < X < 42)

Second Year Assignment Test 5 version R

1. Use the binomial expansion to expand $\left(1 - \frac{1}{4}x\right)^{\frac{1}{2}}$, |x| < 2 in ascending powers of x, up to and including the term in x^3 , simplifying each term.

2. An object is projected from a fixed origin O with velocity $(4i + 5j) ms^{-1}$. The particle moves freely under gravity and passes through the point P with position vector k(i - j) m, where k is a positive constant.

a) Find the value of k correct to 2 s.f.

b) Find:

i) the speed of the object at the instant when it passes through P correct to 2 s.f.ii) the angle of motion of the object at the instant when it passes through P correct to 2 s.f.

3. The random variable X can take any value from 1 to 50. Given that X has a discrete uniform distribution, find:

a) P(X = 51) b) P(X ≥ 49) c) P(13 < X < 14)

Answers Version O

1. $1 - \frac{x}{4} - \frac{x}{4}$	$-\frac{x^2}{32} - \frac{x^3}{128}$	
2a) 7.3	b) i) 14 ms^{-1}	ii) 73°
3a) 0.02	b) 0.46	

Answers Version P

c) 0.56

1. $1 + \frac{x}{4} - \frac{x}{3}$	$\frac{x^2}{32} + \frac{x^3}{128}$		
2a) 5.5	b) i) 12 <i>ms</i> ⁻¹	ii) 76°	
3a) 0.02	b) 0.44		c) 0.58

Answers Version Q

1. $1 + \frac{x}{8} - \frac{x}{8}$	$\frac{x^2}{128} + \frac{x^3}{1024}$		
2a) 20	b) i) 22 <i>ms</i> ⁻¹	ii) 72°	
3a) 0.02	b) 0.26		c) 0.8

Answers Version R

1
$$1 - \frac{x}{8} - \frac{x^2}{128} - \frac{x^3}{1024}$$

2a) 7.3 b) i) 14 ms⁻¹ ii) 73°
3a) 0 b) 0.04 c) 0