Second Year Assignment Test 5 version 0

1. Use the binomial expansion to expand $\left(1-\frac{1}{2} x\right)^{\frac{1}{2}},|x|<2$ in ascending powers of x, up to and including the term in x^{3}, simplifying each term.
2. An object is projected from a fixed origin O with velocity $(4 \boldsymbol{i}+5 \boldsymbol{j}) m s^{-1}$. The particle moves freely under gravity and passes through the point P with position vector $k(\boldsymbol{i}-\boldsymbol{j}) \mathrm{m}$, where k is a positive constant.
a) Find the value of k correct to $2 \mathrm{~s} . \mathrm{f}$.
b) Find:
i) the speed of the object at the instant when it passes through P correct to 2 s.f.
ii) the angle of motion of the object at the instant when it passes through P correct to 2 s.f.
3. The random variable X can take any value from 1 to 50 . Given that X has a discrete uniform distribution, find:
a) $P(X=1)$
b) $P(X \geq 28)$
c) $\mathrm{P}(13<X<42)$

Second Year Assignment Test 5 version P

1. Use the binomial expansion to expand $\left(1+\frac{1}{2} x\right)^{\frac{1}{2}},|x|<2$ in ascending powers of x , up to and including the term in x^{3}, simplifying each term.
2. An object is projected from a fixed origin O with velocity $(3 \boldsymbol{i}+6 \boldsymbol{j}) m s^{-1}$. The particle moves freely under gravity and passes through the point P with position vector $k(\boldsymbol{i}-\boldsymbol{j}) \mathrm{m}$, where k is a positive constant.
a) Find the value of k correct to $2 \mathrm{~s} . \mathrm{f}$.
b) Find:
i) the speed of the object at the instant when it passes through P correct to 2 s.f.
ii) the angle of motion of the object at the instant when it passes through P correct to 2 s.f.
3. The random variable X can take any value from 1 to 50 . Given that X has a discrete uniform distribution, find:
a) $P(X=2)$
b) $P(X \geq 29)$
c) $\mathrm{P}(10<X<40)$

Second Year Assignment Test 5 version Q

1. Use the binomial expansion to expand $\left(1+\frac{1}{4} x\right)^{\frac{1}{2}},|\mathrm{x}|<2$ in ascending powers of x , up to and including the term in x^{3}, simplifying each term.
2. An object is projected from a fixed origin O with velocity $(7 \boldsymbol{i}+7 \boldsymbol{j}) \mathrm{ms}^{-1}$. The particle moves freely under gravity and passes through the point P with position vector $k(\boldsymbol{i}-\boldsymbol{j}) \mathrm{m}$, where k is a positive constant.
a) Find the value of k
b) Find:
i) the speed of the object at the instant when it passes through P correct to 2 s.f. ii) the angle of motion of the object at the instant when it passes through P correct to 2 s.f..
3. The random variable X can take any value from 1 to 50 . Given that X has a discrete uniform distribution, find:
a) $P(X=8)$
b) $P(X \geq 38)$
c) P $(1<X<42)$

Second Year Assignment Test 5 version R

1. Use the binomial expansion to expand $\left(1-\frac{1}{4} x\right)^{\frac{1}{2}},|\mathrm{x}|<2$ in ascending powers of x , up to and including the term in x^{3}, simplifying each term.
2. An object is projected from a fixed origin O with velocity $(4 \boldsymbol{i}+5 \boldsymbol{j}) m s^{-1}$. The particle moves freely under gravity and passes through the point P with position vector $k(\boldsymbol{i}-\boldsymbol{j}) \mathrm{m}$, where k is a positive constant.
a) Find the value of k correct to 2 s.f.
b) Find:
i) the speed of the object at the instant when it passes through P correct to 2 s.f.
ii) the angle of motion of the object at the instant when it passes through P correct to 2 s.f.
3. The random variable X can take any value from 1 to 50 . Given that X has a discrete uniform distribution, find:
a) $P(X=51)$
b) $P(X \geq 49)$
c) P $(13<X<14)$

Answers Version 0

1. $1-\frac{x}{4}-\frac{x^{2}}{32}-\frac{x^{3}}{128}$
2a) 7.3
b) i) $14 \mathrm{~ms}^{-1}$
ii) 73°
3a) 0.02
b) 0.46
c) 0.56

Answers Version P

1. $1+\frac{x}{4}-\frac{x^{2}}{32}+\frac{x^{3}}{128}$
2a) 5.5
b) i) $12 \mathrm{~ms}^{-1}$
ii) 76°
3a) 0.02
b) 0.44
c) 0.58

Answers Version Q

1. $1+\frac{x}{8}-\frac{x^{2}}{128}+\frac{x^{3}}{1024}$
2a) 20
b) i) $22 \mathrm{~ms}^{-1}$
ii) 72°
3a) 0.02
b) 0.26
c) 0.8

Answers Version R

$11-\frac{x}{8}-\frac{x^{2}}{128}-\frac{x^{3}}{1024}$
2a) 7.3
b) i) $14 \mathrm{~ms}^{-1}$
ii) 73°
3a) 0
b) 0.04
c) 0

