Second Year Assignment Test 4 version 0

1) A firework is launched vertically with a speed of $v \mathrm{~ms}^{-1}$. When it reaches its maximum height, the firework explodes into two parts, which are projected horizontally in opposite directions, each with speed $2 v \mathrm{~ms}^{-1}$. Show that the two parts of the firework land a distance of $\frac{a v^{2}}{g} m$ apart, where a is an integer which should be stated.
2) Find the following integrals
(a) $\int \frac{\sin x \cos x}{\sqrt{(\cos 2 x+3)}} d x$
b) $\int \frac{\sin x \cos x}{\cos 2 x+3} d x$
3) The diagram shows two intersecting sectors: $A B D$, with radius 5 cm and angle 1.2 radians, and CBD, with radius 12 cm .
Find the area of the overlapping section.

Second Year Assignment Test 4 version \mathbf{P}

1) A firework is launched vertically with a speed of $v m s^{-1}$. When it reaches its maximum height, the firework explodes into two parts, which are projected horizontally in opposite directions, each with speed $3 v \mathrm{~ms}^{-1}$. Show that the two parts of the firework land a distance of $\frac{a v^{2}}{g} m$ apart, where a is an integer which should be stated.
2) Find the following integrals
(a) $\int \frac{2 \sin x \cos x}{\sqrt{(\cos 2 x+3)}} d x$
b) $\int \frac{2 \sin x \cos x}{\cos 2 x+3} d x$
3) The diagram shows two intersecting sectors: $A B D$, with radius 6 cm and angle 1.1 radians, and $C B D$, with radius 10 cm .
Find the area of the overlapping section.

Second Year Assignment Test 4 version Q

1) A firework is launched vertically with a speed of $v m s^{-1}$. When it reaches its maximum height, the firework explodes into two parts, which are projected horizontally in opposite directions, each with speed $4 v \mathrm{~ms}^{-1}$. Show that the two parts of the firework land a distance of $\frac{a v^{2}}{g} m$ apart, where a is an integer which should be stated.
2) Find the following integrals
(a) $\int \frac{3 \sin x \cos x}{\sqrt{(\cos 2 x+3)}} d x$
b) $\int \frac{3 \sin x \cos x}{\cos 2 x+3} d x$
3) The diagram shows two intersecting sectors: $A B D$, with radius 7 cm and angle 1 radian, and CBD, with radius 9 cm .
Find the area of the overlapping section.

Second Year Assignment Test 4 version R

1) A firework is launched vertically with a speed of $v \mathrm{~ms}^{-1}$. When it reaches its maximum height, the firework explodes into two parts, which are projected horizontally in opposite directions, each with speed $p v \mathrm{~ms}^{-1}$. Show that the two parts of the firework land a distance of $\frac{a v^{2}}{g} m$ apart, where a is an integer which should be stated.
2) Find the following integrals
(a) $\int \frac{4 \sin x \cos x}{\sqrt{ }(\cos 2 x+3)} d x$
b) $\int \frac{4 \sin x \cos x}{\cos 2 x+3} d x$
3) The diagram shows two intersecting sectors: $A B D$, with radius 11 cm and angle 0.5 radians, and CBD, with radius 3 cm .
Find the area of the overlapping section.

Answers Version 0

1) 4
2) a) $-\frac{1}{2}(\cos 2 x+3)^{\frac{1}{2}}+c$
b) $-\frac{1}{4} \ln |\cos 2 x+3|+c$
3) $4.62 \mathrm{~cm}^{2}$

Answers Version P

1) 6
2) a) $-(\cos 2 x+3)^{\frac{1}{2}}+c$
b) $-\frac{1}{2} \ln |\cos 2 x+3|+c$
3) $5.88 \mathrm{~cm}^{2}$

Answers Version Q

1) 8
$\begin{array}{ll}\text { 2) a) }-\frac{3}{2}(\cos 2 x+3)^{\frac{1}{2}}+c & \text { b) }-\frac{3}{4} \ln |\cos 2 x+3|+c \\ \text { 3) } 6.81 \mathrm{~cm}^{2} & \end{array}$

Answers Version R

1) $2 p$
2) a) $-2(\cos 2 x+3)^{\frac{1}{2}}+c$
b) $-\ln |\cos 2 x+3|+c$
3) $8.04 \mathrm{~cm}^{2}$
