Assignment 16 Test Version 0

1. The diagram shows a vertical cylindrical tank of height 200 cm containing water. Water is leaking from a hole P on the side of the tank. At time t minutes after the leaking starts, the height of water in the tank is $h \mathrm{~cm}$. The height $h \mathrm{~cm}$ of the water in the tank satisfies the differential equation $\frac{\mathrm{d} h}{\mathrm{~d} t}=k(h-9)^{\frac{1}{2}}, 9<h \leqslant 200$
where k is a constant. Given that, when $h=130$, the height of the
 water is falling at a rate of 1.1 cm per minute,
(a) show that the value of k is -0.1

Given that the tank was full of water when the leaking started,
(b) solve the differential equation with your value of k, to find the value of t when $h=50$ Give your answer to the nearest minute.
2. A non-uniform rod, $A B$, of mass m and length $2 l$, rests in equilibrium with one end A on a rough horizontal floor and the other end B against a rough vertical wall. The rod is in a vertical plane perpendicular to the wall and makes an angle of 60° with the floor as shown in Figure 1. The coefficient of friction between the rod and the floor is $\frac{1}{4}$ and the coefficient of friction between the rod and the wall is $\frac{2}{3}$. The rod is on
 the point of slipping at both ends.
(a) Find the magnitude of the vertical component of the force exerted on the rod by the floor. Write your answer in the format kmg where k is a rational number which should be stated.
The centre of mass of the rod is at G.
(b) Find the distance $A G$. Write your answer in the format $p l$ where p is a real number which should be stated correct to 3 significant figures.

Assignment 16 Test Version P

1. The diagram shows a vertical cylindrical tank of height 190 cm containing water. Water is leaking from a hole P on the side of the tank. At time t minutes after the leaking starts, the height of water in the tank is $h \mathrm{~cm}$. The height $h \mathrm{~cm}$ of the water in the tank satisfies the differential equation $\frac{d h}{d t}=k(h-10)^{\frac{1}{2}} \quad 10<h \leqslant 190$
where k is a constant. Given that, when $h=130$, the height of the
 water is falling at a rate of 1.1 cm per minute,
(a) show that the value of k is -0.1

Given that the tank was full of water when the leaking started,
(b) solve the differential equation with your value of k, to find the value of t when $h=60$ Give your answer to the nearest minute.
2. A non-uniform rod, $A B$, of mass m and length $2 l$, rests in equilibrium with one end A on a rough horizontal floor and the other end B against a rough vertical wall. The rod is in a vertical plane perpendicular to the wall and makes an angle of 60° with the floor as shown in Figure 1. The coefficient of friction between the rod and the floor is $\frac{2}{3}$ and the coefficient of friction between the rod and the wall is $\frac{1}{4}$. The rod is on
 the point of slipping at both ends.
(a) Find the magnitude of the vertical component of the force exerted on the rod by the floor. Write your answer in the format $k m g$ where k is a rational number which should be stated.
The centre of mass of the rod is at G.
(b) Find the distance $A G$. Write your answer in the format $p l$ where p is a real number which should be stated correct to 3 significant figures.

Assignment 16 Test Version Q

1. The diagram shows a vertical cylindrical tank of height 180 cm containing water. Water is leaking from a hole P on the side of the tank. At time t minutes after the leaking starts, the height of water in the tank is $h \mathrm{~cm}$. The height $h \mathrm{~cm}$ of the water in the tank satisfies the differential equation $\frac{d h}{d t}=k(h-10)^{\frac{1}{2}} \quad 10<h \leqslant 180$
where k is a constant. Given that, when $h=130$, the height of the
 water is falling at a rate of 1.1 cm per minute,
(a) show that the value of k is -0.1

Given that the tank was full of water when the leaking started,
(b) solve the differential equation with your value of k, to find the value of t when $h=70$ Give your answer to the nearest minute.
2. A non-uniform rod, $A B$, of mass m and length $2 l$, rests in equilibrium with one end A on a rough horizontal floor and the other end B against a rough vertical wall. The rod is in a vertical plane perpendicular to the wall and makes an angle of 60° with the floor as shown in Figure 1. The coefficient of friction between the rod and the floor is $\frac{1}{4}$ and the coefficient of friction between the rod and the wall is $\frac{1}{2}$. The rod is on
 the point of slipping at both ends.
(a) Find the magnitude of the vertical component of the force exerted on the rod by the floor. Write your answer in the format $k m g$ where k is a rational number which should be stated.
The centre of mass of the rod is at G.
(b) Find the distance $A G$. Write your answer in the format $p l$ where p is a real number which should be stated correct to 3 significant figures.

Assignment 16 Test Version \mathbf{R}

1. The diagram shows a vertical cylindrical tank of height 170 cm
 containing water. Water is leaking from a hole P on the side of the tank. At time t minutes after the leaking starts, the height of water in the tank is $h \mathrm{~cm}$. The height $h \mathrm{~cm}$ of the water in the tank satisfies the differential equation $\frac{d h}{d t}=k(h-10)^{\frac{1}{2}} \quad 10<h \leqslant 170$
where k is a constant. Given that, when $h=130$, the height of the water is falling at a rate of 1.1 cm per minute,
(a) show that the value of k is -0.1

Given that the tank was full of water when the leaking started,
(b) solve the differential equation with your value of k, to find the value of t when $h=40$ Give your answer to the nearest minute.
2. A non-uniform rod, $A B$, of mass m and length $2 l$, rests in equilibrium with one end A on a rough horizontal floor and the other end B against a rough vertical wall. The rod is in a vertical plane perpendicular to the wall and makes an angle of 60° with the floor as shown in Figure 1. The coefficient of friction between the rod and the floor is $\frac{1}{2}$ and the coefficient of friction between the rod and the wall is $\frac{2}{3}$. The rod is on
 the point of slipping at both ends.
(a) Find the magnitude of the vertical component of the force exerted on the rod by the floor. Write your answer in the format $k m g$ where k is a rational number which should be stated.
The centre of mass of the rod is at G.
(b) Find the distance $A G$. Write your answer in the format $p l$ where p is a real number which should be stated correct to 3 significant figures.

Answers Version 0

1. b) 148

2a) $\frac{6}{7} m g$ b) 1.03 I
Answers Version P

1. b) 127

2a) $\frac{6}{7} m g$ b) 2.27 I

Answers Version Q

1. b) 106

2a) $\frac{8}{9} m g$ b) 0.99 I
Answers Version R

1. b) 143

2a) $\frac{3}{4} \mathrm{mg}$ b) 1.80 /

