Second Year Assignment Test 14 Version 0

1. At time $t=0$ a particle P is at rest at a point with position vector $4 \boldsymbol{i}-6 \boldsymbol{j} \mathrm{~m}$ with respect to a fixed origin 0.

The acceleration of P at time t seconds (where $t \geq 0$) is $(4 t-3) \boldsymbol{i}-6 t^{2} \boldsymbol{j} m s^{-2}$,
Find:
a) the velocity of P when $t=\frac{1}{2}$
b) the position vector of P when $t=6$
2. Solve the differential equation $(x-2)(3 x-8) \frac{d y}{d x}=(8 x-18) y$ given that when $y=8, x=3$
3. From the large data set, the daily total rainfall, $x \mathrm{~mm}$ and the daily total sunshine, y hours were recorded for Camborne on seven consecutive days in May 2015.

Rainfall, x	2.2	tr	1.4	4.4	tr	0.2	0.6
Sunshine, y	5.2	7.7	5.6	0.3	5.1	0.1	8.9

a) Calculate the product moment correlation coefficient for these 7 days, stating clearly how you deal with the entries marked "tr"
b) With reference to your answer to a), comment on the suitability of a linear regression model for these data.

Second Year Assignment Test 14 Version P

1. At time $t=0$ a particle P is at rest at a point with position vector $4 \boldsymbol{i}-6 \boldsymbol{j} \mathrm{~m}$ with respect to a fixed origin 0.

The acceleration of P at time t seconds (where $t \geq 0$) is $(4 t-3) \boldsymbol{i}-6 t^{2} \boldsymbol{j} m s^{-2}$
Find:
a) the velocity of P when $t=1$
b) the position vector of P when $t=1$
2. Solve the differential equation $(x-2)(3 x-8) \frac{d y}{d x}=2(4 x-9) y$ given that when $y=8, x=3$
3. From the large data set, the daily total rainfall, $x \mathrm{~mm}$ and the daily total sunshine, y hours were recorded for Camborne on seven consecutive days in May 2015.

Rainfall, x	12.2	tr	11.4	14.4	tr	10.2	10.6
Sunshine, y	5.2	7.7	5.6	0.3	5.1	0.1	8.9

a) Calculate the product moment correlation coefficient for these 7 days, stating clearly how you deal with the entries marked "tr"
b) With reference to your answer to a), comment on the suitability of a linear regression model for these data.

Second Year Assignment Test 14 Version Q

1. At time $t=0$ a particle P is at rest at a point with position vector $4 \boldsymbol{i}-6 \boldsymbol{j} \mathrm{~m}$ with respect to a fixed origin 0.

The acceleration of P at time t seconds (where $t \geq 0$) is $(4 t-3) \boldsymbol{i}-6 t^{2} \boldsymbol{j} m s^{-2}$
Find:
a) the velocity of P when $t=2$
b) the position vector of P when $t=2$
2. Solve the differential equation $(3 x-6)(3 x-8) \frac{d y}{d x}=(24 x-54) y$ given that when $y=8, x=3$
3. From the large data set, the daily total rainfall, $x \mathrm{~mm}$ and the daily total sunshine, y hours were recorded for Camborne on seven consecutive days in May 2015.

Rainfall, x	2.2	tr	1.4	4.4	tr	0.2	0.6
Sunshine, y	15.2	17.7	15.6	10.3	15.1	10.1	18.9

a) Calculate the product moment correlation coefficient for these 7 days, stating clearly how you deal with the entries marked "tr"
b) With reference to your answer to a), comment on the suitability of a linear regression model for these data.

Second Year Assignment Test 14 Version R

1. At time $t=0$ a particle P is at rest at a point with position vector $4 \boldsymbol{i}-6 \boldsymbol{j} \mathrm{~m}$ with respect to a fixed origin 0.

The acceleration of P at time t seconds (where $t \geq 0$) is $(4 t-3) \boldsymbol{i}-6 t^{2} \boldsymbol{j} m s^{-2}$
Find:
a) the velocity of P when $t=10$
b) the position vector of P when $t=3$
2. Solve the differential equation $(x-2)\left(\frac{3}{2} x-4\right) \frac{d y}{d x}=(4 x-9) y$ given that when $y=8, x=3$
3. From the large data set, the daily total rainfall, $x \mathrm{~mm}$ and the daily total sunshine, y hours were recorded for Camborne on seven consecutive days in May 2015.

Rainfall, x	22.2	tr	21.4	24.4	tr	20.2	20.6
Sunshine, y	35.2	37.7	35.6	30.3	35.1	30.1	38.9

a) Calculate the product moment correlation coefficient for these 7 days, stating clearly how you deal with the entries marked "tr"
b) With reference to your answer to a), comment on the suitability of a linear regression model for these data.

Answers Version 0

1. a) $-\boldsymbol{i}-\frac{1}{4} \boldsymbol{j} \mathrm{~ms}^{-1} \quad$ b) $94 \boldsymbol{i}-654 \boldsymbol{j} \mathrm{~m}$
2. $y=8(x-2)(3 x-8)^{\frac{5}{3}}$
3. a) -0.473 (3 s.f.) treating "tr" as 0
b) The data shows a weak negative correlation so a linear model may not be best. There may be other variables affecting the relationship or a different model might be a better fit.

Answers Version P

1. a) $\boldsymbol{- i}-2 \boldsymbol{j} m s^{-1}$
b) $\frac{19}{6} \boldsymbol{i}-\frac{13}{2} \boldsymbol{j}$ m
2. $y=8(x-2)(3 x-8)^{\frac{5}{3}}$
3. a) -0.413 (3 s.f.) treating "tr" as 0
b) The data shows a weak negative correlation so a linear model may not be best. There may be other variables affecting the relationship or a different model might be a better fit.

Answers Version Q

$\begin{array}{ll}\text { 1. a) } 2 \boldsymbol{i}-16 \boldsymbol{j} \mathrm{~ms}^{-1} & \text { b) } \frac{10}{3} \boldsymbol{i}-14 \boldsymbol{j} \mathrm{~m}\end{array}$
2. $y=8(x-2)(3 x-8)^{\frac{5}{3}}$
3. a) -0.473 (3 s.f.) treating "tr" as 0
b) The data shows a weak negative correlation so a linear model may not be best. There may be other variables affecting the relationship or a different model might be a better fit.

Answers Version R

1. a) $170 \boldsymbol{i}-2000 \boldsymbol{j} \mathrm{~ms}^{-1}$
b) $\frac{17}{2} \boldsymbol{i}-\frac{93}{2} \boldsymbol{j} \mathrm{~m}$
2. $y=8(x-2)(3 x-8)^{\frac{5}{3}}$
3. a) -0.385 (3 s.f.) treating "tr" as 0
b) The data shows a weak negative correlation so a linear model may not be best. There may be other variables affecting the relationship or a different model might be a better fit.
