Second Year Assignment Test 14 Version O

1. At time t=0 a particle P is at rest at a point with position vector $4\mathbf{i}-6\mathbf{j}$ m with respect to a fixed origin O.

The acceleration of P at time t seconds (where $t \ge 0$) is $(4t - 3)\mathbf{i} - 6t^2\mathbf{j} \ ms^{-2}$, Find:

- a) the velocity of P when $t = \frac{1}{2}$
- b) the position vector of P when t = 6
- 2. Solve the differential equation $(x-2)(3x-8)\frac{dy}{dx} = (8x-18)y$ given that when y=8, x=3
- 3. From the large data set, the daily total rainfall, x mm and the daily total sunshine, y hours were recorded for Camborne on seven consecutive days in May 2015.

Rainfall, x	2.2	tr	1.4	4.4	tr	0.2	0.6
Sunshine, y	5.2	7.7	5.6	0.3	5.1	0.1	8.9

- a) Calculate the product moment correlation coefficient for these 7 days, stating clearly how you deal with the entries marked "tr"
- b) With reference to your answer to a), comment on the suitability of a linear regression model for these data.

Second Year Assignment Test 14 Version P

1. At time t=0 a particle P is at rest at a point with position vector $4\mathbf{i}-6\mathbf{j}$ m with respect to a fixed origin O.

The acceleration of P at time t seconds (where $t \ge 0$) is $(4t-3)\mathbf{i} - 6t^2\mathbf{j} \ ms^{-2}$

- a) the velocity of P when t=1
- b) the position vector of P when t=1
- 2. Solve the differential equation $(x-2)(3x-8)\frac{dy}{dx} = 2(4x-9)y$ given that when y=8, x=3
- 3. From the large data set, the daily total rainfall, x mm and the daily total sunshine, y hours were recorded for Camborne on seven consecutive days in May 2015.

Rainfall, x	12.2	tr	11.4	14.4	tr	10.2	10.6
Sunshine, y	5.2	7.7	5.6	0.3	5.1	0.1	8.9

- a) Calculate the product moment correlation coefficient for these 7 days, stating clearly how you deal with the entries marked "tr"
- b) With reference to your answer to a), comment on the suitability of a linear regression model for these data.

Second Year Assignment Test 14 Version Q

1. At time t=0 a particle P is at rest at a point with position vector 4i-6j m with respect to a fixed origin O.

The acceleration of P at time t seconds (where $t \ge 0$) is $(4t-3)\mathbf{i} - 6t^2\mathbf{j} \ ms^{-2}$ Find:

- a) the velocity of P when t=2
- b) the position vector of P when t=2
- 2. Solve the differential equation $(3x 6)(3x 8)\frac{dy}{dx} = (24x 54)y$ given that when y = 8, x = 3
- 3. From the large data set, the daily total rainfall, x mm and the daily total sunshine, y hours were recorded for Camborne on seven consecutive days in May 2015.

Rainfall, x	2.2	tr	1.4	4.4	tr	0.2	0.6
Sunshine, y	15.2	17.7	15.6	10.3	15.1	10.1	18.9

- a) Calculate the product moment correlation coefficient for these 7 days, stating clearly how you deal with the entries marked "tr"
- b) With reference to your answer to a), comment on the suitability of a linear regression model for these data.

Second Year Assignment Test 14 Version R

1. At time t=0 a particle P is at rest at a point with position vector $4\mathbf{i}-6\mathbf{j}$ m with respect to a fixed origin O.

The acceleration of P at time t seconds (where $t \ge 0$) is $(4t - 3)\mathbf{i} - 6t^2\mathbf{j} \ ms^{-2}$ Find:

- a) the velocity of P when t = 10
- b) the position vector of P when t=3
- 2. Solve the differential equation $(x-2)\left(\frac{3}{2}x-4\right)\frac{dy}{dx}=(4x-9)y$ given that when y=8, x=3
- 3. From the large data set, the daily total rainfall, x mm and the daily total sunshine, y hours were recorded for Camborne on seven consecutive days in May 2015.

Rainfall, x	22.2	tr	21.4	24.4	tr	20.2	20.6
Sunshine, y	35.2	37.7	35.6	30.3	35.1	30.1	38.9

- a) Calculate the product moment correlation coefficient for these 7 days, stating clearly how you deal with the entries marked "tr"
- b) With reference to your answer to a), comment on the suitability of a linear regression model for these data.

Answers Version O

1. a)
$$-i - \frac{1}{4}j \, ms^{-1}$$
 b) $94i - 654j$ m

2.
$$y = 8(x-2)(3x-8)^{\frac{5}{3}}$$

3. a) -0.473 (3 s.f.) treating "tr" as 0

b) The data shows a weak negative correlation so a linear model may not be best. There may be other variables affecting the relationship or a different model might be a better fit.

Answers Version P

1. a)
$$-i - 2j ms^{-1}$$
 b) $\frac{19}{6}i - \frac{13}{2}j$ m

2.
$$y = 8(x-2)(3x-8)^{\frac{5}{3}}$$

3. a) -0.413 (3 s.f.) treating "tr" as 0

b) The data shows a weak negative correlation so a linear model may not be best. There may be other variables affecting the relationship or a different model might be a better fit.

Answers Version Q

1. a)
$$2i - 16j ms^{-1}$$
 b) $\frac{10}{3}i - 14j$ m

2.
$$y = 8(x-2)(3x-8)^{\frac{5}{3}}$$

3. a) -0.473 (3 s.f.) treating "tr" as 0 $\,$

b) The data shows a weak negative correlation so a linear model may not be best. There may be other variables affecting the relationship or a different model might be a better fit.

Answers Version R

1. a)
$$170i - 2000 j ms^{-1}$$
 b) $\frac{17}{2}i - \frac{93}{2}j$ m

2.
$$y = 8(x-2)(3x-8)^{\frac{5}{3}}$$

3. a) -0.385 (3 s.f.) treating "tr" as 0

b) The data shows a weak negative correlation so a linear model may not be best. There may be other variables affecting the relationship or a different model might be a better fit.