2nd Year Assignment 27

1. The number of bacteria, n thousand per cm³, in a sample of liquid is measured over a period of time, t, in hours. The data is shown in the table.

t	3.9	5.5	6.8	8.5	10.6	11.5	13.3	14.7	16.5	17.8
n	10.1	13.1	14.6	20.7	27.9	31.5	40	49.9	64.7	75.6

The data is coded using the changes of variable x = t and $y = \log_{10} n$.

The regression line of *y* on *x* is found to be y = 0.7606 + 0.0635x.

- (a) Given that the data can be modelled by an equation of the form $n = ab^t$ where *a* and *b* are constants, find the values of *a* and *b*.
- (b) Give an interpretation of the constant *a* in this equation.
- (c) Explain why this model is not reliable for estimating the number of bacteria after 24 hours.
- 2. In a factory, three machinists, Amy, Brad and Ceri, are used to sew shirts.

Amy sews 40% of the shirts. Brad sews 35% of the shirts. Ceri sews the rest of the shirts.

It is known that 5% of the shirts sewn by Amy are faulty, 2% of the shirts sewn by Brad are faulty and 3% of the shirts sewn by Ceri are faulty.

(a) Draw a tree diagram to illustrate all the possible outcomes and associated probabilities.

A shirt is selected at random.

- (b) Calculate the probability that the shirt is sewn by Brad and is not faulty.
- (c) Calculate the probability that the shirt is faulty.
- (d) Given that the shirt is faulty, find the probability that it was not sewn by Ceri.
- 3. The heights of a population of men are normally distributed with mean μ cm and standard deviation σ cm. It is known that 20% of the men are taller than 180 cm and 5% are shorter than 170 cm.
 - (a) Sketch a diagram to show the distribution of heights represented by this information.
 - (b) Find the value of μ and σ .
 - (c) Three men are selected at random, find the probability that they are all taller than 175 cm.

4. The data and scatter diagram show the population, *p*, in millions, of a country taken *t* years since their first census.

t	0	10	20	30	40	50	60	70	80	90	100
р	238.4	252.1	251.3	279	318.7	361.1	439.2	548.2	683.3	846.4	1028.7

Population versus number of years since first census for a country

- (a) Give a reason why the data is coded using the changes of variable x = t and $y = \log_{10} p$.
- (b) The product moment correlation coefficient for the coded data is r = 0.9735. Comment on *r* for this model.
- (c) With reference to your answer to part (b), state whether a model in the form $p = ab^t$, where *a* and *b* are constants, is a good fit for this data.

- 5. A group of students were surveyed by a principal and $\frac{2}{3}$ were found to always hand in assignments on time. When questioned about their assignments $\frac{3}{5}$ said they always start their assignments on the day they are issued and, of those who always start their assignments on the day they are issued, $\frac{11}{20}$ hand them in on time.
 - (a) Draw a tree diagram to represent this information.
 - (b) Find the probability that a randomly selected student
 - (i) always start their assignments on the day they are issued and hand them in on time,
 - (ii) does not always hand in assignments on time and does not start their assignments on the day they are issued.
 - (c) Determine whether or not always starting assignments on the day they are issued and handing them in on time are statistically independent. Give reasons for your answer.
- **6.** A researcher wishes to investigate if there is a positive correlation between the number of vehicles and the number of road fatalities in European countries.

He selects a random sample of 10 European countries and records the number of vehicles, v per 1000 people, and the number of road fatalities, r per 100 000 population, for a particular year. These are shown in the table and scatter diagrams.

Country	v	r
Austria	578	5.4
Belgium	559	6.7
France	578	5.1
Germany	572	4.3
Greece	624	9.1
Ireland	513	4.1
Italy	679	6.1
Luxembourg	739	8.7
Spain	593	3.7
UK	519	2.9

- (a) What is the definition of a critical value?
- (b) The product moment correlaton coefficient for v and r is 0.714. Use this value to test for positive correlation at the 5% significance level. Interpret your result in context.
- (c) The researcher wishes to predict the number of road fatalities for a country with 650 vehicles per 1000 people. Write down the regression model he should use.
- (d) State the dependent variable for the regression model in part (c).
- (e) Monaco has 899 vehicles per 1000 people. Explain why the model stated in part (c) is not reliable for estimating the number of road fatalities in Monaco.
- 7. An object has three different forces F_1 N, F_2 N and F_3 N acting on its centre of mass.

$$F_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 and , $F_2 = \begin{pmatrix} -3 \\ 4 \end{pmatrix}$. The object is in equilibrium.

Find **F**₃

- 8. A 0.1 kg inflatable ball floats on the surface of the sea. The current from the water underneath the ball exerts a force $\mathbf{C} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \mathbf{N}$ and the wind exerts a force of $\mathbf{W} = \begin{pmatrix} 3 \\ -2 \end{pmatrix} \mathbf{N}$ on the ball.
 - (a) Find the resultant force exerted on the ball.
 - (b) Calculate the acceleration of the ball.

Initially, the ball is at the origin and has velocity $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ N m s⁻¹.

- (c) Find the *x* and *y* coordinates of the ball *t* s later.
- (d) Find the distance travelled by the ball when t = 10 s.

9. Figure 3 shows Alice, who weighs 50 kg, sitting on the right-hand end of a light see-saw. Bob, who weighs 80 kg, stands on the opposite side at a distance x m from the end. The length of the see-saw is 4 m and it pivots about its centre.

Figure 3

- (a) Draw a diagram showing the forces acting on the see-saw due to the two people. Label the value of each force in newtons.
- (b) Write down the total clockwise moment about the centre in terms of x.
- (c) Find the value of x for which the see-saw is in equilibrium.
- (d) Given that Bob remains on the opposite side to Alice, describe with inequalities the range of x for which the see-saw tilts towards Alice.
- (e) Describe one limitation of this model.

10. A ball is launched from the origin with speed 1 m s⁻¹. Its velocity vector makes an angle θ above the horizontal. It travels over flat ground and is modelled as a particle moving freely under gravity, as shown in the diagram.

(In this question, take $g = 10 \text{ m s}^{-2}$.)

- (a) Find the horizontal and vertical displacements of the particle at time *t* seconds. You should give your answer in terms of θ and *t*.
- (b) Show that the horizontal distance travelled by the particle before it hits the ground is $\frac{\sin 2\theta}{10}$.
- (c) Find the value θ for which the horizontal distance travelled is a maximum.
- (d) Describe one limitation of this model.
- 11. Figure 5 shows a cylindrical object with mass 8 kg resting on two cylindrical bars of equal radius. The lines connecting the centre of each of the bars to the centre of the object make an angle of 40° to the vertical.

Figure 5

- (a) Draw a diagram showing all the forces acting on the object. Describe each of the forces using words.
- (b) Calculate the magnitude of the force on each of the bars due to the cylindrical object.