2nd Year Assignment 25

- 1. Prove by exhaustion that $1+2+3+...+n \circ \frac{n(n+1)}{2}$ for positive integers from 1 to 6 inclusive.
- 2. (a) When θ is small, show that the equation $\frac{1 + \sin q + \tan 2q}{2\cos 3q 1}$ can be written as $\frac{1}{1 3q}$.

(b) Hence write down the value of $\frac{1 + \sin q + \tan 2q}{2\cos 3q - 1}$ when θ is small.

- 3. A stone is thrown from the top of a building. The path of the stone can be modelled using the parametric equations x = 10t, $y = 8t 4.9t^2 + 10$, $t \ge 0$, where x is the horizontal distance from the building in metres and y is the vertical height of the stone above the level ground in metres.
 - (a) Find the horizontal distance the stone travels before hitting the ground.
 - (b) Find the greatest vertical height.

4. Given that
$$x = \sec 4y$$
, find

(a) $\frac{dy}{dx}$ in terms of y. (b) Show that $\frac{dy}{dx} = \frac{k}{x\sqrt{x^2 - 1}}$, where k is a constant which should be found.

$$f(x) = \frac{6}{x} + \frac{3}{x^2} - 7x^{\frac{5}{2}}$$

(a) Find $\int f(x) dx$.

5.

- (b) Evaluate $\int_{4}^{9} f(x) dx$, giving your answer in the form $m + n \ln p$, where m, n and p are rational numbers.
- 6. The diagram shows a sketch of part of the graph y = f(x) where f(x) = 3|x-4|-5

(b) Given that $f(x) = -\frac{1}{3}x + k$, where *k* is a constant has two distinct roots, state the possible values of *k*.

0

⁽a) State the range of f.

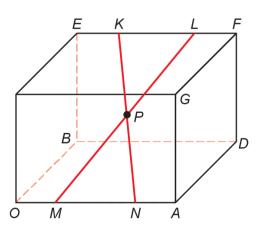
$$f(x) \circ \frac{9x^2 + 25x + 16}{9x^2 - 16}$$

Show that f(x) can be written in the form $A + \frac{B}{3x-4} + \frac{C}{3x+4}$, where A, B and C are constants to be found.

- 8. A ball is dropped from a height of 80 cm. After each bounce it rebounds to 70% of its previous maximum height.
 - (a) Write a recurrence relation to model the maximum height in centimetres of the ball after each subsequent bounce.
 - (b) Find the height to which the ball will rebound after the fifth bounce.
 - (c) Find the total vertical distance travelled by the ball before it stops bouncing.
 - (d) State one limitation with the model.

7.

- 9. Solve $6\sin(\theta + 60) = 8\sqrt{3}\cos\theta$ in the range 0, θ , 360° . Round your answer to 1 decimal place.
- 10. Use proof by contradiction to show that there is no greatest positive rational number.
- 11. The first three terms in the binomial expansion of $(a+bx)^{\frac{1}{3}}$ are $4-\frac{1}{8}x+cx^2+\ldots$
 - (a) Find the values of *a* and *b*.
 - (b) State the range of values of x for which the expansion is valid.
 - (c) Find the value of *c*.
- 12. The diagram shows a cuboid whose vertices are O, A, B, C, D, E, F and G. **a**, **b** and **c** are the vectors \overrightarrow{OA} , \overrightarrow{OB} and \overrightarrow{OC} respectively. The points *M* and *N* lie on *OA* such that OM : MN : NA = 1:2:1. The points *K* and *L* lie on *EF* such that EK : KL : LF = 1:2:1.



Prove that the diagonals *KN* and *ML* bisect each other at *P*.

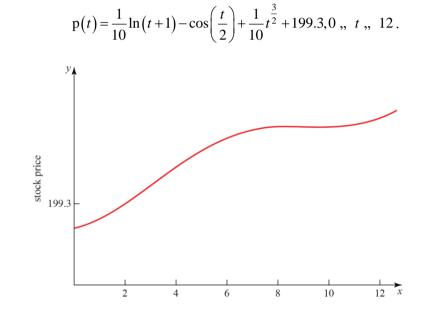
13. The value of a computer, *V*, decreases over time, *t*, measured in years. The rate of decrease of the value is proportional to the remaining value.

Given that the initial value of the computer is V_0 ,

(a) show that $V = V_0 e^{-kt}$.

After 10 years the value of the computer is $\frac{1}{5}V_0$.

- (b) Find the exact value of *k*.
- (c) How old is the computer when its value is only 5% of its original value? Give your answer to 3 significant figures.



The diagram is a graph of the price of a stock during a 12-hour trading window. The equation of the curve is given above.

(a) Show that the price reaches a local maximum in the interval 8.5 < t < 8.6.

Figure 3 shows that the price reaches a local minimum between 9 and 11 hours after trading begins.

(b) Using the Newton–Raphson procedure once and taking $t_0 = 9.9$ as a first approximation, find a second approximation of when the price reaches a local minimum.

14.