Differentiation A: since and were

- Prove, from first principles, that the derivative of $\sin x$ is $\cos x$. You may assume the formula for $\sin(A+B)$ and that as $h\to 0$, $\frac{\sin h}{h}\to 1$ and $\frac{\cos h-1}{h}\to 0$.
- 2 Differentiate:

$$\mathbf{a} \ y = 2\cos x$$

b
$$y = 2 \sin \frac{1}{2}x$$

$$c y = \sin 8x$$

b
$$y = 2\sin\frac{1}{2}x$$
 c $y = \sin 8x$ **d** $y = 6\sin\frac{2}{3}x$

3 Find f'(x) given that:

$$\mathbf{a} \ \mathbf{f}(x) = 2\cos x$$

b
$$f(x) = 6\cos\frac{5}{6}x$$

a
$$f(x) = 2\cos x$$
 b $f(x) = 6\cos\frac{5}{6}x$ **c** $f(x) = 4\cos\frac{1}{2}x$ **d** $f(x) = 3\cos 2x$

$$\mathbf{d} \ \mathbf{f}(x) = 3\cos 2x$$

4 Find $\frac{dy}{dx}$ given that:

$$\mathbf{a} \ \ y = \sin 2x + \cos 3x$$

b
$$y = 2\cos 4x - 4\cos x + 2\cos 7x$$

$$\mathbf{c} \quad y = x^2 + 4\cos 3x$$

$$\mathbf{d} \ \ y = \frac{1 + 2x\sin 5x}{x}$$

- 5 A curve has equation $y = x \sin 3x$. Find the stationary points of the curve in the interval $0 \le x \le \pi$.
- 6 Find the gradient of the curve $y = 2 \sin 4x 4 \cos 2x$ at the point where $x = \frac{\pi}{2}$

1 Let $f(x) = \sin x$ $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \frac{\sin(x+h) - \sin x}{h}$ $= \lim_{h \to 0} \frac{\sin x \cos h + \cos x \sin h - \sin x}{h}$ $=\lim_{h\to 0}\left[\left(\frac{\cos h-1}{h}\right)\sin x+\left(\frac{\sin h}{h}\right)\cos x\right]$ Since $\frac{\cos h - 1}{h} \to 0$ and $\frac{\sin h}{h} \to 1$ the expression inside the limit $\rightarrow (0 \times \sin x + 1 \times \cos x)$ So $\lim_{h\to 0} \frac{\sin(x+h) - \sin x}{h} = \cos x$ Hence the derivative of $\sin x$ is $\cos x$.

2 a
$$-2\sin x$$
 b $\cos \frac{1}{2}x$
c $8\cos 8x$ d $4\sin \frac{2}{3}x$
3 a $-2\sin x$ b $-5\cos \frac{1}{6}x$
c $-2\sin(\frac{1}{2}x)$ d $-6\sin 2x$

4 a
$$2\cos 2x - 3\sin 3x$$
 b $-8\sin 4x + 4\sin x - 14\sin 7x$
c $2x - 12\sin 3x$ d $-\frac{1}{x^2} + 10\cos 5x$
5 (0.41, -0.532), (1.68, 2.63), (2.50, 1.56)
6 8 7 (0.554, 2.24), (2.12, -2.24)

Exponentials and hogarithms

1 a Find
$$\frac{dy}{dx}$$
 for each of the following:

$$\mathbf{a} \quad \mathbf{y} = 4\mathbf{e}^{7x}$$

$$\mathbf{b} \ \ y = 3^x$$

$$\mathbf{c} \quad y = \left(\frac{1}{2}\right)^x$$

$$\mathbf{d} \ \ y = \ln 5x$$

e
$$y = 4\left(\frac{1}{3}\right)^x$$
 f $y = \ln(2x^3)$

$$\mathbf{f} \quad y = \ln{(2x^3)}$$

$$y = e^{3x} - e^{-3x}$$

g
$$y = e^{3x} - e^{-3x}$$
 h $y = \frac{(1 + e^x)^2}{e^x}$

2 Find f'(x) given that:

$$\mathbf{a} \ \mathbf{f}(x) = 3^{4x}$$

a
$$f(x) = 3^{4x}$$
 b $f(x) = \left(\frac{3}{2}\right)^{2x}$

c
$$f(x) = 2^{4x} + 4^{2x}$$

c
$$f(x) = 2^{4x} + 4^{2x}$$
 d $f(x) = \frac{2^{7x} + 8^x}{4^{2x}}$

In parts c and d, rewrite the terms so that they all have the same base and hence can be simplified.

3 Find the gradient of the curve
$$y = (e^{2x} - e^{-2x})^2$$
 at the point where $x = \ln 3$.

4 Find the equation of the tangent to the curve
$$y = 2^x + 2^{-x}$$
 at the point $(2, \frac{17}{4})$.

5 A curve has the equation
$$y = e^{2x} - \ln x$$
. Show that the equation of the tangent at the point with x-coordinate 1 is

$$y = (2e^2 - 1)x - e^2 + 1$$

6 A particular radioactive isotope has an activity, R millicuries at time t days, given by the equation
$$R = 200 \times 0.9^t$$
. Find the value of $\frac{dR}{dt}$, when $t = 8$.

$$c \left(\frac{1}{2}\right)^x \ln \frac{1}{2}$$

$$d \frac{1}{x}$$

1 a
$$28e^{7x}$$
 b $3^{x}\ln 3$ c $\left(\frac{1}{2}\right)^{x}\ln \frac{1}{2}$ d $\frac{1}{x}$
e $4\left(\frac{1}{3}\right)^{x}\ln \frac{1}{3}$ f $\frac{3}{x}$ g $3e^{3x} + 3e^{-3x}$ h $-e^{-x} + e^{x}$

$$g 3e^{3x} + 3e^{-3x} 1$$

2 a
$$3^{4x}4\ln 3$$
 b $\left(\frac{3}{2}\right)^{2x}2\ln \frac{3}{2}$

d
$$2^{3x} 3 \ln 2 - 2^{-x} \ln 2$$

$$\mathbf{d} \quad 2^{3x} 3 \ln 2 - 2^{-x} \ln 2$$

$$\mathbf{4} \quad 4y = 15 \ln 2(x-2) + 17$$

$$\frac{dy}{dx} = 2e^{2x} - \frac{1}{x} \text{ At } x = 1, y = e^{2}, \frac{dy}{dx} = 2e^{2} - 1$$

Equation of tangent:
$$y - e^2 = (2e^2 - 1)(x - 1)$$

= $y = (2e^2 - 1)x - 2e^2 + 1 + e^2 \Rightarrow y = (2e^2 - 1)x - e^2 + 1$

Scanned with CamScanner

1 Differentiate:

$$a (1 + 2x)^4$$

b
$$(3-2x^2)^{-5}$$
 c $(3+4x)^{\frac{1}{2}}$

$$c (3+4x)^{\frac{1}{2}}$$

d
$$(6x + x^2)^7$$

$$e^{\frac{1}{3+2x}}$$

$$\int \sqrt{7-x}$$

$$g 4(2+8x)^4$$

h
$$3(8-x)^{-6}$$

2 Differentiate:

$$b \cos(2x-1)$$

$$c \sqrt{\ln x}$$

$$\mathbf{d} (\sin x + \cos x)^5$$

e
$$\sin(3x^2 - 2x + 1)$$

$$f \ln(\sin x)$$

h
$$\cos(e^{2x} + 3)$$

3 Given that
$$y = \frac{1}{(4x+1)^2}$$
 find the value of $\frac{dy}{dx}$ at $(\frac{1}{4}, \frac{1}{4})$.

4 A curve C has equation $y = (5 - 2x)^3$. Find the tangent to the curve at the point P with x-coordinate 1.

5 Given that $y = (1 + \ln 4x)^{\frac{3}{2}}$, find the value of $\frac{dy}{dx}$ at $x = \frac{1}{4}e^3$.

6 Find $\frac{dy}{dx}$ for the following curves, giving your answers in terms of y.

$$\mathbf{a} \quad x = y^2 + y$$

$$\mathbf{b} \ \ x = \mathbf{e}^y + 4y$$

$$\mathbf{c} \quad x = \sin 2y$$

$$\mathbf{d} \ 4x = \ln y + y^3$$

7 Find the value of $\frac{dy}{dx}$ at the point (8, 2) on the curve with equation $3y^2 - 2y = x$.

Problem-solving

Your expression for $\frac{dy}{dx}$ will be in terms of y.

Remember to substitute the y-coordinate into the expression to find the gradient.

8 Find the value of $\frac{dy}{dx}$ at the point $(\frac{5}{2}, 4)$ on the curve with equation $y^{\frac{1}{2}} + y^{-\frac{1}{2}} = x$.

9 a Differentiate $e^y = x$ with respect to y.

b Hence, prove that if $y = \ln x$, then $\frac{dy}{dx} = \frac{1}{x}$

1 a
$$8(1+2x)^3$$

c
$$2(3+4x)^{-\frac{1}{2}}$$

d
$$7(6+2x)(6x+x^2)^6$$

$$e^{-\frac{2}{(3+2\pi)^2}}$$

$$f - \frac{1}{2\sqrt{7}}$$

$$g 128(2 + 8x)^3$$

h
$$18(8-x)^{-7}$$

$$\mathbf{d} \quad 5(\cos x - \sin x)(\sin x + \cos x)^4$$

e
$$(6x-2)\cos(3x^2-2x+1)$$

g
$$-8 \sin 4x e^{\cos 4x}$$

4 $y = -54x + 81$
h $-2e^{2x} \sin(e^{2x} + 3)$
5 $12e^{-3}$

$$u = -54r + 81$$

$$h - 2e^{2x} \sin(e^{2x} + 1)$$

6 **a**
$$\frac{1}{2y+1}$$
 b $\frac{1}{e^y+4}$ **c** $\frac{1}{2}\sec 2y$ **d** $\frac{4y}{1+3}$
9 **a** $e^y = \frac{dx}{dy}$

9 a
$$e^y = \frac{dx}{dy}$$

b
$$y = \ln x$$
, $e^y = x$

Differentiate with respect to y using part a $e^{y} = \frac{dx}{dy} \Rightarrow \frac{1}{e^{y}} = \frac{dy}{dx}$

$$e^y = \frac{\mathrm{d}x}{\mathrm{d}y} \Rightarrow \frac{1}{e^y} = \frac{\mathrm{d}y}{\mathrm{d}x}$$

Since
$$x = e^y$$
, $\frac{dy}{dx} = \frac{1}{x}$

The Fredret Rule

1 Differentiate:

$$a x(1+3x)^5$$

b
$$2x(1+3x^2)^3$$

c
$$x^3(2x+6)^4$$

d
$$3x^2(5x-1)^{-1}$$

2 Differentiate:

$$a e^{-2x}(2x-1)^5$$

$$\mathbf{b} \sin 2x \cos 3x$$

$$c e^x \sin x$$

$$d \sin(5x) \ln(co)$$

3 a Find the value of
$$\frac{dy}{dx}$$
 at the point (1, 8) on the curve with equation $y = x^2(3x - 1)^3$.

b Find the value of
$$\frac{dy}{dx}$$
 at the point (4, 36) on the curve with equation $y = 3x(2x + 1)^{\frac{1}{2}}$.

c Find the value of
$$\frac{dy}{dx}$$
 at the point $(2, \frac{1}{5})$ on the curve with equation $y = (x - 1)(2x + 1)^{-1}$

4 Find the stationary points of the curve C with the equation
$$y = (x - 2)^2(2x + 3)$$
.

5 A curve C has equation
$$y = \left(x - \frac{\pi}{2}\right)^5 \sin 2x$$
, $0 < x < \pi$. Find the gradient of the curve at th point with x-coordinate $\frac{\pi}{4}$

6 A curve C has equation
$$y = x^2 \cos(x^2)$$
. Find the equation of the tangent to the curve C at a point $P\left(\frac{\sqrt{\pi}}{2}, \frac{\pi\sqrt{2}}{8}\right)$ in the form $ax + by + c = 0$ where a, b and c are exact constants.

1 a
$$(3x+1)^4(18x+1)$$
 b $2(3x^2+1)^2(21x^2+1)$ c $16x^2(x+3)^3(7x+9)$ d $3x(5x-2)(5x-1)^{-2}$

c
$$e^x(\sin x + \cos x)$$
 d $5\cos 5x\ln(\cos x) - \tan x \sin 5x$

4 (2, 0),
$$\left(-\frac{1}{3}, \frac{343}{27}\right)$$
 5 $\frac{5\pi^4}{256}$

6
$$\sqrt{2\pi} (\pi - 4)x + 8y - \pi\sqrt{2} \left(\frac{\pi - 2}{2}\right) = 0$$

a $-4(x-3)(2x-1)^4 e^{-2x}$

b $2\cos 2x\cos 3x - 3\sin 2x\sin 3x$

1 Differentiate:

$$\mathbf{a} \ \frac{5x}{x+1}$$

$$\mathbf{b} \ \frac{2x}{3x-2}$$

$$e^{\frac{x+3}{2x+1}}$$

$$\frac{3x^2}{(2x-1)^2}$$

a
$$\frac{5x}{x+1}$$
 b $\frac{2x}{3x-2}$ **c** $\frac{x+3}{2x+1}$ **d** $\frac{3x^2}{(2x-1)^2}$ **e** $\frac{6x}{(5x+3)^2}$

2 Differentiate:

$$\mathbf{a} \; \frac{\mathrm{e}^{4x}}{\cos x}$$

$$\mathbf{b} \quad \frac{\ln x}{x+1}$$

a
$$\frac{e^{4x}}{\cos x}$$
 b $\frac{\ln x}{x+1}$ **c** $\frac{e^{-2x} + e^{2x}}{\ln x}$ **d** $\frac{(e^x + 3)^3}{\cos x}$ **e** $\frac{\sin^2 x}{\ln x}$

$$d \frac{(e^x + 3)^3}{\cos x}$$

$$e^{\frac{\sin^2 x}{\ln x}}$$

- 3 Find the value of $\frac{dy}{dx}$ at the point $(1, \frac{1}{4})$ on the curve with equation $y = \frac{x}{3x+1}$
- 4 Find the value of $\frac{dy}{dx}$ at the point (12, 3) on the curve with equation $y = \frac{x+3}{(2x+1)^{\frac{1}{2}}}$
- 5 Find the stationary points of the curve C with equation $y = \frac{e^{2x+3}}{x}$, $x \ne 0$.
- 6 Find the equation of the tangent to the curve $y = \frac{e^{\frac{1}{3}x}}{x}$ at the point $(3, \frac{1}{3}e)$.
- 7 Find the exact value of $\frac{dy}{dx}$ at the point $x = \frac{\pi}{9}$ on the curve with equation $y = \frac{\ln x}{\sin 3x}$
- 8 The curve C has equation $x = \frac{e^y}{3 + 2y}$
 - a Find the coordinates of the point P where the curve cuts the x-axis.
 - **b** Find an equation of the normal to the curve at P, giving your answer in the form y = mx + c, where m and c are integers to be found.

1 **a**
$$\frac{5}{(x+1)^2}$$
 b $-\frac{4}{(3x-2)^2}$ **c** $-\frac{5}{(2x+1)^2}$
d $-\frac{6x}{(2x-1)^3}$ **e** $\frac{15x+18}{(5x+3)^{\frac{3}{2}}}$
2 **a** $\frac{e^{4x}(\sin x + 4\cos x)}{\cos^2 x}$ **b** $\frac{1}{x(x+1)} - \frac{\ln x}{(x+1)^2}$
c $\frac{e^{2x}((2xe^{4x} - 2x)\ln x - e^{4x} - 1)}{x(\ln x)^2}$
d $\frac{(e^x + 3)^2((e^x + 3)\sin x + 3e^x\cos x)}{\cos^2 x}$
e $\frac{2\sin x\cos x}{\ln x} - \frac{\sin^2 x}{x(\ln x)^2}$
3 $\frac{1}{16}$ 4 $\frac{2}{25}$ 5 $(0.5, 2e^4)$
6 $y = \frac{1}{3}e$ 7 $\frac{6\sqrt{3} - 2\pi \ln\left(\frac{\pi}{9}\right)}{\pi}$
8 **a** $(\frac{1}{3}, 0)$ **b** $y = -\frac{1}{9}x + \frac{1}{27}$

1 Differentiate:

$$\mathbf{a} y = \tan 3x$$

b
$$v = 4 \tan^3 x$$

b
$$y = 4 \tan^3 x$$
 c $y = \tan(x - 1)$

d
$$y = x^2 \tan \frac{1}{2}x + \tan (x - \frac{1}{2})$$

2 Differentiate:

$$\mathbf{a} \cot 4x$$

b
$$\sec 5x$$

d
$$\sec^2 3x$$

$$e \times \cot 3x$$

$$f \frac{\sec^2 x}{x}$$

$$g \csc^3 2x$$

h
$$\cot^2(2x-1)$$

3 Find the function f'(x) where f(x) is:

a
$$(\sec x)^{\frac{1}{2}}$$

$$\mathbf{b} \sqrt{\cot x}$$

$$\mathbf{d} \tan^2 x$$

 $e \sec^3 x$

$$f \cot^3 x$$

4 Find f'(x) where f(x) is:

a
$$x^2 \sec 3x$$

$$\mathbf{b} \; \frac{\tan 2x}{x}$$

$$c \frac{x^2}{\tan x}$$

$$\mathbf{d} \, \mathbf{e}^{x} \sec 3x$$

$$e \frac{\ln x}{\tan x}$$

$$f = \frac{e^{\tan x}}{\cos x}$$

5 The curve C has equation

$$y = \frac{1}{\cos x \sin x}, 0 < x \le \pi$$

a Find
$$\frac{dy}{dx}$$

- **b** Determine the number of stationary points of the curve C.
- c Find the equation of the tangent at the point where $x = \frac{\pi}{3}$, giving your answer in the form ax + by + c = 0, where a, b and c are exact constants to be determined.

```
1 a 3 \sec^2 3x b 12 \tan^2 x \sec^2 x
                                                              c \sec^2(x-1)
     \frac{1}{2}x^2\sec^2\frac{1}{2}x + 2x\tan\frac{1}{2}x + \sec^2(x-\frac{1}{2})
2 a -4\csc^2 4x b 5\sec 5x \tan 5x
c -4\csc 4x \cot 4x d 6\sec^2 3x \tan 3x
                                          d 6 sec<sup>2</sup> 3x tan 3x
     e \cot 3x - 3x \csc^2 3x f \sec^2 x (2x \tan x - 1)
      g -6 \csc^3 2x \cot 2x
     h -4 \cot(2x-1) \csc^2(2x-1)
3 a \frac{1}{2}(\sec x)^{\frac{1}{2}}\tan x b -\frac{1}{2}(\cot x)^{-\frac{1}{2}}\csc^2 x
     c -2\csc^2 x \cot x d 2\tan x \sec^2 x
e 3\sec^3 x \tan x f -3\cot^2 x \csc^2 x
4 a 2x \sec 3x + 3x^2 \sec 3x \tan 3x
     b \frac{2x\sec^2 2x - \tan 2x}{e} e^{2x \tan x - x^2 \sec^2 x}
     d e^x \sec 3x (1 + 3\tan 3x) e \frac{\tan x - x \sec^2 x \ln x}{2}
     f = e^{\tan x} \sec x (\tan x + \sec^2 x)
5 \quad \mathbf{a} \quad \frac{1}{\cos^2 x} - \frac{1}{\sin^2 x}
     c = 24x - 9y + 12\sqrt{3} - 8a
```

Scanned with CamScanner

1 Find $\frac{dy}{dx}$ for each of the following, leaving your answer in terms of the parameter t.

a
$$x = 2t, y = t^2 - 3t + 2$$

b
$$x = 3t^2$$
, $y = 2t^3$

$$c x = t + 3t^2, y = 4t$$

d
$$x = t^2 - 2$$
, $y = 3t^5$

$$e \ x = \frac{2}{t}, \ y = 3t^2 - 2$$

d
$$x = t^2 - 2$$
, $y = 3t^5$ **e** $x = \frac{2}{t}$, $y = 3t^2 - 2$ **f** $x = \frac{1}{2t - 1}$, $y = \frac{t^2}{2t - 1}$

$$\mathbf{g} \ \ x = \frac{2t}{1+t^2}, \ y = \frac{1-t^2}{1+t^2}$$
 $\mathbf{h} \ \ x = t^2 e^t, \ y = 2t$ $\mathbf{i} \ \ x = 4 \sin 3t, \ y = 3 \cos 3t$

h
$$x = t^2 e^t$$
, $y = 2t$

i
$$x = 4 \sin 3t, y = 3 \cos 3t$$

$$y = 2 + \sin t, y = 3 - 4\cos t$$

$$\mathbf{k} \ x = \sec t, \ y = \tan t$$

$$i \quad x = 2 + \sin t, \quad y = 3 - 4\cos t \quad k \quad x = \sec t, \quad y = \tan t$$
 $1 \quad x = 2t - \sin 2t, \quad y = 1 - \cos 2t$

$$m x = e^t - 5, v = \ln t, t > 0$$

$$\mathbf{n} \ \ x = \ln t, \ y = t^2 - 64, \ t > 0$$

$$\mathbf{m} \ x = e^t - 5, \ y = \ln t, \ t > 0$$
 $\mathbf{n} \ x = \ln t, \ y = t^2 - 64, \ t > 0$ $\mathbf{o} \ x = e^{2t} + 1, \ y = 2e^t - 1, \ -1 < t < 1$

2 a Find the equation of the tangent to the curve with parametric equations $x = 3 - 2 \sin t$, $y = t \cos t$, at the point P, where $t = \pi$.

b Find the equation of the tangent to the curve with parametric equations $x = 9 - t^2$, $y = t^2 + t^2$ 6t, at the point P, where t = 2.

3 a Find the equation of the normal to the curve with parametric equations $x = e^t$, $y = e^t + e^{-t}$, at the point P, where t = 0.

b Find the equation of the normal to the curve with parametric equations $x = 1 - \cos 2t$, $y = \sin 2t$, at the point P, where $t = \frac{\pi}{6}$

10 The curve C has parametric equations

$$x = 2\sin t, \quad y = \sqrt{2}\cos 2t, \quad 0 < t < \pi$$

a Find an expression for $\frac{dy}{dx}$ in terms of t.

The point A lies on C where $t = \frac{\pi}{3}$. The line l is the normal to C at A.

b Find an equation for l in the form ax + by + c = 0, where a, b and c are exact constants to be found.

c Prove that the line I does not intersect the curve anywhere other than at point A.

1 **a**
$$\frac{2t-3}{2}$$
 b $\frac{6t^2}{6t} = t$ **c** $\frac{4}{1+6t}$ **d** $\frac{15t^3}{2}$
e $-3t^3$ **f** $t(1-t)$ **g** $\frac{2t}{t^2-1}$ **h** $\frac{2}{(t^2+2t)e^t}$
i $-\frac{3}{4}\tan 3t$ **j** $4\tan t$ **k** $\csc t$ **l** $\cot t$
m $\frac{1}{te^t}$ **n** $2t^2$ **o** $\frac{1}{e^t}$

$$\mathbf{m} \; \frac{1}{t \mathbf{e}^t} \qquad \mathbf{n} \; \; 2t^2 \qquad \mathbf{o} \; \; \frac{1}{\mathbf{e}^t}$$

2 **a**
$$y = \frac{1}{2}x + \frac{3}{2} - \pi$$
 b $2y + 5x = 57$

3 a
$$x = 1$$
 b $y + \sqrt{3}x = \sqrt{3}$

10 **a**
$$-2\sqrt{2}\sin t$$
 b $x - \sqrt{6}y - 2\sqrt{3} = 0$
c $2\sin t - \sqrt{12}\cos 2t - 2\sqrt{3} = 0$
 $\sin t - \sqrt{3}\cos 2t - \sqrt{3} = 0$
 $2\sqrt{3}\sin^2 t + \sin t - 2\sqrt{3} = 0$
 $(2\sin t - \sqrt{3})(\sqrt{3}\sin t + 2) = 0$
 $\sin t = \frac{\sqrt{3}}{2}\left(\sin t \neq \frac{2}{\sqrt{3}}\right) \Rightarrow t = \frac{\pi}{3} \text{ or } \frac{2\pi}{3}$
B is when $t = \frac{2\pi}{3}$: $\left(2\sin\frac{2\pi}{3}, \sqrt{2}\cos\frac{4\pi}{3}\right) = \left(\sqrt{3}, -\frac{1}{\sqrt{2}}\right)$
Same point as *A*, so *l* only intersects *C* once.

H Implicit Differentiation

3 Find an expression in terms of x and y for $\frac{dy}{dx}$, given that:

$$a x^2 + y^3 = 2$$

b
$$x^2 + 5y^2 = 14$$

b
$$x^2 + 5y^2 = 14$$
 c $x^2 + 6x - 8y + 5y^2 = 13$

$$\mathbf{d} \ y^3 + 3x^2y - 4x = 0$$

d
$$y^3 + 3x^2y - 4x = 0$$
 e $3y^2 - 2y + 2xy = x^3$ **f** $x = \frac{2y}{x^2 - y}$

$$\mathbf{f} \quad x = \frac{2y}{x^2 - y}$$

$$g(x-y)^4 = x + y + 5$$
 $h e^x y = xe^y$

$$\mathbf{h} \ \mathbf{e}^{x} y = x \mathbf{e}^{y}$$

$$i \sqrt{xy} + x + y^2 = 0$$

- 4 Find the equation of the tangent to the curve with implicit equation $x^2 + 3xy^2 y^3 = 9$ at the point (2, 1).
- 5 Find the equation of the normal to the curve with implicit equation $(x + y)^3 = x^2 + y$ at the point (1, 0).
- 6 Find the coordinates of the points of zero gradient on the curve with implicit equation $x^2 + 4y^2 - 6x - 16y + 21 = 0$.

Problem-solving

Find $\frac{dy}{dx}$ then set the numerator equal to 0 to find the x-coordinate at the points of 0 gradient. You need to find two corresponding y-coordinates.

7 A curve C is described by the equation

$$2x^2 + 3y^2 - x + 6xy + 5 = 0$$

Find an equation of the tangent to C at the point (1, -2), giving your answer in the form ax + by + c = 0, where a, b and c are integers.

3 a
$$-\frac{2x}{3y^2}$$
 b $-\frac{x}{5y}$ c $\frac{-3-x}{5y-4}$
d $\frac{4-6xy}{3x^2+3y^2}$ e $\frac{3x^2-2y}{6y-2+2x}$ f $\frac{3x^2-y}{2+x}$
g $\frac{4(x-y)^3-1}{1+4(x-y)^3}$ h $\frac{e^xy-e^y}{xe^y-e^x}$ i $\frac{-2\sqrt{xy}-y}{4y\sqrt{xy}+x}$
4 $y=-\frac{7}{9}x+\frac{23}{9}$ 5 $y=2x-2$
6 (3, 1) and (3, 3) 7 $3x+2y+1=0$

Sewand Derivatives

1 For each of the following functions, find the interval on which the function is:

ii concave

a
$$f(x) = x^3 - 3x^2 + x - 2$$

a
$$f(x) = x^3 - 3x^2 + x - 2$$
 b $f(x) = x^4 - 3x^3 + 2x - 1$

c
$$f(x) = \sin x$$
, $0 < x <$

d
$$f(x) = -x^2 + 3x - 7$$
 e $f(x) = e^x - x^2$

$$e f(x) = e^x - x^2$$

$$f(x) = \ln x, x > 0$$

2 $f(x) = \arcsin x, -1 < x < 1$

a Show that f(x) is concave on the interval (-1, 0).

b Show that f(x) is convex on the interval (0, 1).

c Hence deduce the point of inflection of f.

3 Find any point(s) of inflection of the following functions.

a
$$f(x) = \cos^2 x - 2\sin x$$
, $0 < x < 2\pi$

b
$$f(x) = -\frac{x^3 - 2x^2 + x - 1}{x - 2}, x \neq 2$$

c
$$f(x) = -\frac{x^3}{x^2 - 4}, x \neq \pm 2$$

d
$$f(x) = \arctan x$$

4 $f(x) = 2x^2 \ln x, x > 0$

Show that f has exactly one point of inflection and determine the value of x at this point

5 The curve C has equation $y = e^x(x^2 - 2x + 2)$.

a Find the exact coordinates of the stationary point on C and determine its nature.

b Find the coordinates of any non-stationary points of inflection on C.

2 **a**
$$f'(x) = \frac{1}{\sqrt{1-x^2}}, f''(x) = \frac{x}{(1-x^2)^{\frac{3}{2}}}$$

 $f''(x) \le 0 \Rightarrow x \le 0$, so $f(x)$ concave for $x \in (-1, 0)$
b $f''(x) \ge 0 \Rightarrow x \ge 0$, so $f(x)$ convex for $x \in (0, 1)$
c $(0, 0)$
3 **a** $\left(\frac{\pi}{6}, -\frac{1}{4}\right), \left(\frac{5\pi}{6}, -\frac{1}{4}\right)$
b $(1, -1)$ **c** $(0, 0)$ **d** $(0, 0)$
4 $f'(x) = 2x + 4x \ln x = 2x(1 + 2 \ln x), f''(x) = 6 + 4 \ln x$
 $f''(x) = 0 \Rightarrow 4 \ln x = -6 \Rightarrow \ln x = -\frac{3}{2} \Rightarrow x = e^{-\frac{3}{2}}$
There is one point of inflection where $x = c^{-\frac{3}{2}}$
5 **a** $(0, 2)$, point of inflection **b** $\left(-2, \frac{10}{e^2}\right)$

J Rales of Charge

- 1 Given that $A = \frac{1}{4}\pi r^2$ and that $\frac{dr}{dt} = 6$, find $\frac{dA}{dt}$ when r = 2.
- 2 Given that $y = xe^x$ and that $\frac{dx}{dt} = 5$, find $\frac{dy}{dt}$ when x = 2.
- 3 Given that $r = 1 + 3\cos\theta$ and that $\frac{d\theta}{dt} = 3$, find $\frac{dr}{dt}$ when $\theta = \frac{\pi}{6}$
- 4 Given that $V = \frac{1}{3}\pi r^3$ and that $\frac{dV}{dt} = 8$, find $\frac{dr}{dt}$ when r = 3.
- 5 A population is growing at a rate which is proportional to the size of the population. Write down a differential equation for the growth of the population.
- 6 A curve C has equation y = f(x), y > 0. At any point P on the curve, the gradient of C is proportional to the product of the x- and the y-coordinates of P. The point A with coordinate (4, 2) is on C and the gradient of C at A is $\frac{1}{2}$

Show that
$$\frac{dy}{dx} = \frac{xy}{16}$$

7 Liquid is pouring into a container at a constant rate of 30 cm³ s⁻¹. At time t seconds liquid is leaking from the container at a rate of $\frac{2}{15}V$ cm³ s⁻¹, where V cm³ is the volume of the liquid in the container at that time.

Show that
$$-15 \frac{dV}{dt} = 2V - 450$$
.

- 8 An electrically-charged body loses its charge, Q coulombs, at a rate, measured in coulombs per second, proportional to the charge Q. Write down a differential equation in terms of Q and t where t is the time in seconds since the body started to lose its charge.
- 9 The ice on a pond has a thickness x mm at a time t hours after the start of freezing. The rate of increase of x is inversely proportional to the square of x. Write down a differential equation in terms of x and t.
- 10 The radius of a circle is increasing at a constant rate of 0.4 cm per second.
 - a Find $\frac{dC}{dt}$, where C is the circumference of the circle, and interpret this value in the context of
 - b Find the rate at which the area of the circle is increasing when the radius is 10 cm.
 - c Find the radius of the circle when its area is increasing at the rate of 20 cm² per second.

1
$$6\pi$$
 2 $15e^2$ 3 $-\frac{9}{2}$ 4 $\frac{8}{9\pi}$ 5 $\frac{dP}{dt} = kP$
6 $\frac{dy}{dx} = kxy$; at $(4, 2)\frac{dy}{dx} = \frac{1}{2}$, so $8k = \frac{1}{2}$. $k = \frac{1}{16}$

Therefore $\frac{dy}{dx} = \frac{xy}{16}$

Therefore
$$\frac{dy}{dx} = \frac{xy}{16}$$

7 $\frac{dV}{dt}$ = rate in - rate out = $30 - \frac{2}{15}V \Rightarrow 15\frac{dV}{dt} = 450 - 2V$

So $-15\frac{dV}{dt} = 2V - 450$

8 $\frac{dQ}{dt} = -kQ$

9 $\frac{dx}{dt} = \frac{k}{x^2}$

$$8 \quad \frac{\mathrm{d}Q}{\mathrm{d}t} = -kQ \qquad \qquad 9 \quad \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{k}{x^2}$$

10 a Circumference,
$$C_r = 2\pi r$$
, so $\frac{\mathrm{d}C}{\mathrm{d}t} = 2\pi \times 0.4$
= $0.8\pi\,\mathrm{cm}\,\mathrm{s}^{-1}$
Rate of increase of circumference with respect to time.
b $8\pi\,\mathrm{cm}^2\,\mathrm{s}^{-1}$ c $\frac{25}{\pi}\,\mathrm{cm}$