$2^{\text {nd }}$ Year Assignment 23

1. Carry out the following integrations. (For the definite integrals, you must carry out the integration yourself - don't just put the expression into your calculator. By all means, check your work like this).

Remember that if you have to integrate a fraction, ask yourself whether if you differentiate the denominator, does it equal the numerator. If the answer is yes, the answer is ln (denominator)
a. $\int \frac{1}{2} x e^{4 x} d x$
b. $\int 2 x^{2} \sec ^{2} x \tan x d x$
c. $\int \frac{3 x-1}{\sqrt{4 x-1}} d x$ (use $u=4 x-1$)
d. $\int_{\sqrt{2}}^{2} \frac{1}{x^{2} \sqrt{x^{2}-1}} d x$ (use $x=\sec \theta$)
e. $\int \sin ^{2} 3 x d x$
f. $\int \frac{2^{x}}{2^{x}+1} d x$
g. $\int \frac{x+2}{x+5} d x \quad$ (divide $(x+2)$ by $(x+1)$ and then integrate)
h. $\int \frac{x}{x^{2}+9} d x$
i. $\int \frac{\ln x^{2}}{x} d x$
j. $\int \frac{1}{\sqrt{x} \cos ^{2} \sqrt{x}} d x$
k. $\int_{1}^{2} \frac{32 x^{2}+4}{(4 x+1)(4 x-1)} d x \quad$ (give your answer in the form $2+k \ln m$)
I. $\int \frac{x}{\sqrt{x+1}} d x$
(use $t^{2}=x+1$)
m. $\int_{\frac{\pi}{12}}^{\frac{\pi}{3}}(\cos x+\sin x)(\cos x-\sin x) d x$
n. $\int_{1}^{4} \frac{4}{16 x^{2}+8 x-3} d x$
2. a) $f(x)=(1-x)^{\frac{1}{3}}, \quad-1<x<1$

Find the binomial expansion of $f(x)$ in ascending powers of x up and including the term in x^{2}
$g(x)=(8-3 x)^{\frac{1}{3}}, \quad-\frac{8}{3}<x<\frac{8}{3}$
b) Use the result of part (a) to find the binomial expansion of $g(x)$ in ascending powers of x up and including the term in x^{2}.
c) Hence, show that $\sqrt[3]{7} \approx \frac{551}{288}$
3. By considering the compound angle identity for $\tan (A+B)$, with suitable values for A and B, show that $\cot 75^{\circ}=2-\sqrt{3}$.
4. A box of mass 5 kg lies on a rough plane inclined at 30° to the horizontal. The box is held in equilibrium by a horizontal force of magnitude 20 N , as shown in the diagram. The force acts in a vertical plane containing a line of greatest slope of the inclined plane.

The box is in equilibrium and on the point of moving down the plane. The box is modelled as a particle. Find
(a) the magnitude of the normal reaction of the plane on the box,
(b) the coefficient of friction between the box and the plane.

Hint: Start by drawing a diagram showing all the forces.

Then resolve parallel and perpendicular to the plane
5. The diagram shows a sketch of the curve C which has equation $y=\mathrm{e}^{x \sqrt{3}} \sin 3 x,-\frac{\pi}{3} \leq x \leq \frac{\pi}{3}$.
(a) Find the x-coordinate of the turning point P on C, for which $x>0$. Give your answer as a multiple of π.
(b) Find an equation of the normal to C at the point where $x=0$.

Hint: To differentiate $y=\mathrm{e}^{x \sqrt{3}} \sin 3 x$, use the product rule. For (b) find y and $\frac{d y}{d x}$ when $x=0$ and then use $y-y_{1}=m\left(x-x_{1}\right)$
6. Use the trapezium rule with 8 strips to estimate the value of $\int_{-2}^{2} e^{x^{2}} d x$
7. $f(x)=x^{3}+3 x^{2}-2 \sqrt{ } x, \quad x>0$
(a) Show that $f(x)=0$ has a root in the interval $[0.6,0.7]$
(b) Find $f^{\prime}(x)$
(c) Staring with $x_{0}=0.65$, apply the Newton-Raphson procedure once to find an approximate solution to the equation $f(x)=0$ giving your answer to 3 decimal places.
8. A curve has the equation $x^{2}+4 x y-x+y^{2}=35$
(a) Find an expression for $\frac{d y}{d x}$
(b) Find an equation for the tangent to the curve at the point $P(2,3)$

