2nd Year Assignment 21

- 1. Find $\frac{dy}{dx}$ in terms of x and y for each of the following a. $e^{2x} + e^{2y} = xy$, b. $e^{x^2} \sin y + 5 \ln x = 6$ c. $(1 - x^2)(3 - \sec y) = 5xy$ d. $v2^{x} - \tan v = x^{3}v^{6}$
- 2. At time *t* seconds, the surface area of a cube is $A cm^2$ and the volume is $V cm^3$. The surface area of the cube is expanding at a constant rate of $2 \ cm^2 s^{-1}$
- a. Write an expression for V in terms of A.
- b. Find an expression for $\frac{dV}{dt}$
- c. Show that $\frac{dV}{dt} = kV^n$, where k and n are numerical constants to be stated.
- 3. The amount of a certain type of drug in the bloodstream t hours after it has been taken is given by the formula $x = De^{-\frac{1}{8}t}$, where x is the amount of the drug in the bloodstream in milligrams and D is the dose given in milligrams.

A dose of 10 mg of the drug is given.

(a) Find the amount of the drug in the bloodstream 5 hours after the dose is given. Give your answer in mg to 3 decimal places.

A second dose of 10 mg is given after 5 hours.

(b) Show that the amount of the drug in the bloodstream 1 hour after the second dose is 13.549 mg to 3 decimal places.

No more doses of the drug are given. At time T hours after the second dose is given, the amount of the drug in the bloodstream is 3 mg. (c) Find the value of T.

4. The graph shows a sketch of part of the curve with equation $y = f(x), x \in \mathbb{R}$. The curve meets the coordinate axes at the points A(0, 1 - k) and $B(\frac{1}{2} \ln k, 0)$, where k is a constant and k > 1.

On separate diagrams, sketch the curve with equation

(a) y = |f(x)|,

(b) $y = f^{-1}(x)$.

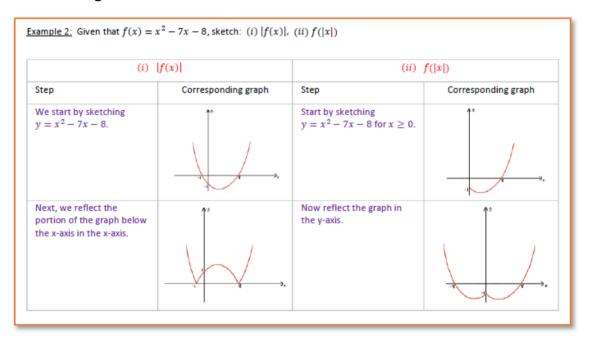
Show on each sketch the coordinates, in terms of k, of each point at which the curve meets or cuts the axes. Given that $f(x) = e^{2x} - k$,

- (c) state the range of f,
- (*d*) find $f^{-1}(x)$,
- (e) write down the domain of f^{-1} .

HINT: b) The graph of $f^{-1}(x)$ is the graph of y = f(x) reflected in y = x

c) The minimum value of e^{2x} is 0. Work out the minimum value of $e^{2x} - k$ and the range will be all values greater than this.

v



Example 3: Find the inverse of the function $f(x) = x^3 - 8$ { $x \in \mathbb{R}, x \ge 2$ }, stating its range.		
[1] We have $y = x^3 - 8$, so interchanging x and y:	$x = y^2 - 8$	
[2] Rearranging to make y the subject[3] This function is our inverse.	$y = \sqrt[3]{x+8}$ $f^{-1}(x) = \sqrt[3]{x+8}$	
The range will be the same as the domain of the original function	Range: $y \ge 2$	

5. A group of office workers were questioned for a health magazine and $\frac{2}{5}$ were found to take regular exercise. When questioned about their eating habits $\frac{2}{3}$ said they always eat breakfast and, of those who always eat breakfast $\frac{9}{25}$ also took regular exercise.

i) Find the probability that a randomly selected member of the group

- (a) always eats breakfast and takes regular exercise,
- (b) does not always eat breakfast and does not take regular exercise.

ii) Determine, giving your reason, whether or not always eating breakfast and taking regular exercise are statistically independent.

HINT: Draw a two way table

	ercise	o exercise	
eakfast	p_1		$\frac{2}{3}$
o breakfast			
	$\frac{2}{5}$		1

To work out p_1 , use the fact that of the $\frac{2}{3}$ who always eat breakfast $\frac{9}{25}$ also took regular exercise. So $p_1 = \frac{9}{25} x \frac{2}{3}$

6. A cuboid has a rectangular cross-section where the length of the rectangle is equal to twice its width, x cm, as shown in the diagram. The volume of the cuboid is 81 cubic centimetres.

(*a*) Show that the total length, *L* cm, of the twelve edges of the cuboid is given by

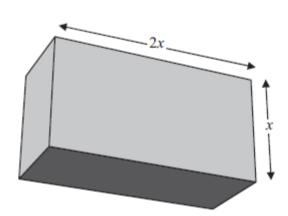
$$L = 12x + \frac{162}{x^2}.$$

(b) Use calculus to find the minimum value of L.

(c) Justify, by further differentiation, that the value of L that you have found is a minimum.

7. (a) Express 3 sin x + 2 cos x in the form R sin (x + α) where R > 0 and 0 < α < $\frac{\pi}{2}$.

- (b) Hence find the greatest value of $(3 \sin x + 2 \cos x)^4$.
- (c) Solve, for $0 < x < 2\pi$, the equation $3 \sin x + 2 \cos x = 1$, giving your answers to 3 decimal places.



8. (a) Prove that $\frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta} = 2\csc 2\theta$, $\theta \neq 90n^{\circ}$.

(b) Sketch the graph of $y = 2 \operatorname{cosec} 2\theta$ for $0^{\circ} < \theta < 360^{\circ}$.

(c) Solve, for $0^{\circ} < \theta < 360^{\circ}$, the equation $\frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta} = 3$,

giving your answers to 1 decimal place.

- 9. A curve is described by the equation $x^3 4y^2 = 12xy$.
- (a) Find the coordinates of the two points on the curve where x = -8.
- (b) Find the gradient of the curve at each of these points.

10. (a) Use the binomial theorem to expand $(2 - 3x)^{-2}$ in ascending powers of x, up to and including the term in x^3 . Give each coefficient as a simplified fraction.

 $f(x) = \frac{a+bx}{(2-3x)^2}$, where *a* and *b* are constants.

In the binomial expansion of f (x), in ascending powers of x, the coefficient of x is 0 and the coefficient of x^2 is $\frac{9}{16}$

(b) Find the value of *a* and the value of *b*,

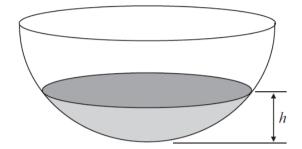
(c) Find the coefficient of x^3 , giving your answer as a simplified fraction.

Test Yourself

Give yourself 20 minutes to answer these questions

A) A hollow hemispherical bowl is shown in the diagram. Water is flowing into the bowl.

When the depth of the water is h m, the volume $V m^3$ is given by



$$V = \frac{1}{12}\pi h^2 (3 - 4h), \quad 0 \le h \le 0.25$$

- a) Find in terms of π , $\frac{dV}{dh}$ when h = 0.1
- b) Water flows into the bowl at a rate of $\frac{\pi}{800} m^3 s^{-1}$. Find the rate of change of h in ms^{-1} , when h = 0..1

B) Find the gradient of the curve with equation ln y = 2x ln x, x > 0, y > 0 at the point on the curve where x = 2. Give your answer as an exact value.