$2^{\text {nd }}$ Year Assignment 19

1. A curve has the equation $y=2 \sin 2 x+\cos 2 x$. Find the stationary points of the curve in the interval $0 \leq x \leq \pi$
2. The population of Cambridge was 37000 in 1900, and was about 109000 in 2000. Given that the population, P , at a time t years after 1900 can be modelled using the equation $P=P_{o} k^{t}$
a. Find the values of P_{o} and k
b. Evaluate $\frac{d P}{d t}$ in the year 2000
c. Interpret your answer to part b) in the context of the model.
3. The curve C has equation $x=4 \cos 2 y$
a. Show that the point $\mathrm{Q}\left(2, \frac{\pi}{6}\right)$ lies on C
b. Show that $\frac{d y}{d x}=-\frac{1}{4 \sqrt{3}}$ at Q
c. Find an equation of the normal to C at Q . Give your answer in the form $a x+$ $b y+c=0$, where a, b and c are exact constants.
4. Given that $y=3 x^{2}(5 x-3)^{3}$, show that $\frac{d y}{d x}=A x(5 x-3)^{n}(B x+C)$, where $\mathrm{n}, \mathrm{A}, \mathrm{B}$ and C are constants to be determined.
5. Differentiate $\frac{x^{4}}{\cos 3 x}$ with respect to x
6. Show that if $y=\sec x$ then $\frac{d y}{d x}=\sec x \tan x$
7. Find the points of zero gradient on the curve with parametric equations $x=\frac{t}{1-t}$, $y=\frac{t^{2}}{1-t}, t \neq 1$.
8. A curve C has equation $3^{x}=y-2 x y$. Find the exact value of $\frac{d y}{d x}$ at the point on C with coordinates $(2,-3)$
9. The curve C has equation $y=x e^{x}$
a. Find the exact coordinates of the stationary point on C and determine its nature
b. Find the coordinates of any non-stationary points of inflection on C
c. Hence sketch the graph of $y=x e^{x}$
10. The volume of a cube is decreasing at a constant rate of $4.5 \mathrm{~cm}^{3}$ per second
a. Find the rate at which the length of one side of the cube is decreasing when the volume is $100 \mathrm{~cm}^{3}$
b. Find the volume of the cube when the length of one side is decreasing at the rate of 2 mm per second.

Test Yourself

Time yourself for 20 minutes to answer these questions.

1. A curve has equation $f(x)=\left(x^{3}-2 x\right) e^{-x}$
a) Find $f^{\prime}(x)$

The normal to C at the origin intersects C again at P .
b) Show that the x -coordinate of P is the solution to the equation $2 x^{2}=e^{x}+4$
2. The curve C has parametric equations $x=4 \cos 2 t, y=3 \sin t, \quad-\frac{\pi}{2}<t<\frac{\pi}{2}$ A is the point $\left(2, \frac{2}{3}\right)$, and lies on C
a) Find the value of t at the point A.
b) Find $\frac{d y}{d x}$ in terms of t
c) Show that an equation of the normal to C at A is $6 y-16 x+23=0$ The normal at A cuts C again at the point B
d) Find the y-coordinate of the point B

