2nd Year Assignment 19

- 1. A curve has the equation $y = 2sin^2x + cos^2x$. Find the stationary points of the curve in the interval $0 \le x \le \pi$
- 2. The population of Cambridge was 37 000 in 1900, and was about 109 000 in 2000. Given that the population, P, at a time t years after 1900 can be modelled using the equation $P = P_0 k^t$
 - a. Find the values of P_o and k
 - b. Evaluate $\frac{dP}{dt}$ in the year 2000
 - c. Interpret your answer to part b) in the context of the model.
- 3. The curve C has equation x = 4cos2y
 - a. Show that the point Q(2, $\frac{\pi}{\epsilon}$) lies on C
 - b. Show that $\frac{dy}{dx} = -\frac{1}{4\sqrt{3}}$ at Q

c. Find an equation of the normal to C at Q. Give your answer in the form ax + by + c = 0, where a,b and c are exact constants.

- 4. Given that $y = 3x^2(5x 3)^3$, show that $\frac{dy}{dx} = Ax(5x 3)^n(Bx + C)$, where n, A, B and C are constants to be determined.
- 5. Differentiate $\frac{x^4}{\cos 3x}$ with respect to x
- 6. Show that if y = secx then $\frac{dy}{dx} = secx tanx$
- 7. Find the points of zero gradient on the curve with parametric equations $x = \frac{t}{1-t}$, $y = \frac{t^2}{t^2}$, $t \neq 1$

$$y = \frac{1}{1-t}, \ t \neq 1.$$

- 8. A curve C has equation $3^x = y 2xy$. Find the exact value of $\frac{dy}{dx}$ at the point on C with coordinates (2,-3)
- 9. The curve C has equation $y = xe^x$
 - a. Find the exact coordinates of the stationary point on C and determine its nature
 - b. Find the coordinates of any non-stationary points of inflection on C
 - c. Hence sketch the graph of $y = xe^x$
- 10. The volume of a cube is decreasing at a constant rate of $4.5 \ cm^3$ per second
 - a. Find the rate at which the length of one side of the cube is decreasing when the volume is $100 \ cm^3$
 - b. Find the volume of the cube when the length of one side is decreasing at the rate of 2 mm per second.

Test Yourself

Time yourself for 20 minutes to answer these questions.

- 1. A curve has equation $f(x) = (x^3 2x)e^{-x}$
- a) Find f'(x)

The normal to C at the origin intersects C again at P.

- b) Show that the x-coordinate of P is the solution to the equation $2x^2 = e^x + 4$
- 2. The curve C has parametric equations $x = 4\cos 2t$, $y = 3\sin t$, $-\frac{\pi}{2} < t < \frac{\pi}{2}$ A is the point $\left(2, \frac{2}{3}\right)$, and lies on C
 - a) Find the value of *t* at the point A.
 - b) Find $\frac{dy}{dx}$ in terms of t
 - c) Show that an equation of the normal to C at A is 6y 16x + 23 = 0The normal at A cuts C again at the point B
 - d) Find the y-coordinate of the point B