$2^{\text {nd }}$ Year Assignment 18

1. A curve has the equation $y=\sin 5 x+\cos 3 x$. Find the equation of the tangent to the curve at the point $(\pi,-1)$
2. A curve has the equation $y=2 x^{2}-\sin x$. Show that the equation of the normal to the curve at the point with x-coordinate π is $x+(4 \pi+1) y-\pi\left(8 \pi^{2}+2 \pi+1\right)=0$
3. A student is attempting to differentiate $\ln k x$.

The student writes: $\boldsymbol{y}=\ln \boldsymbol{k} \boldsymbol{x}$, so $\frac{\boldsymbol{d} \boldsymbol{y}}{\boldsymbol{d} \boldsymbol{x}}=\boldsymbol{k} \ln \boldsymbol{k} \boldsymbol{x}$
Explain the mistake made by the student and state the correct derivative.
4. Prove, from first principles that the derivative of $\sin x$ is $\cos x$
5. Differentiate
a. $\sin ^{2} 3 x$
b. $e^{(x+1)^{2}}$
c. $\ln (\cos x)^{2}$
d. $\frac{1}{3+\cos 2 x}$
e. $\sin \left(\frac{1}{x}\right)$
6. A curve C has equation $y=(x+3)^{2} e^{3 x}$
a. Find $\frac{d y}{d x}$
b. Find the gradient of C at the point where $x=2$
7. Differentiate
a. $(2 \sin x-3 \cos x) \ln 3 x$
b. $x^{4} e^{7 x-3}$
8. A curve C has equation $\frac{e^{2 x}}{(x-2)^{2}}, \quad x \neq 2$
a. Show that $\frac{d y}{d x}=\frac{A e^{2 x}(B x-C)}{(x-2)^{3}}$, where A, B and C are integers to be found
b. Find the equation of the tangent of C at the point $x=1$
9. Given that $f(x)=\frac{2 x}{x+5}+\frac{6 x}{x^{2}+7 x+10}, x>0$
a. Show that $f(x)=\frac{2 x}{x+2}$
b. Hence find $f^{\prime}(3)$
10. The diagram shows part of the curve with equation
$y=f(x)$, where $f(x)=x(1+x) \ln x, x>0$
The point A is the minimum point of the curve
a. Find $f^{\prime}(x)$
b. Hence show that the x-coordinate of A is the solution to the equation $x=e^{-\frac{1+x}{1+2 x}}$

Test Yourself

Time yourself for 20 minutes for these two questions.
A. $\quad p(x)=\frac{9-3 x-12 x^{2}}{(1-x)(1+2 x)}$. Show that $p(x)$ can be written in the form $A+\frac{B}{1-x}+\frac{C}{1+2 x^{\prime}}$, where A, B and C are constants to be found.
B. i) The $4^{\text {th }}, 5^{\text {th }}$ and $6^{\text {th }}$ terms in an arithmetic sequence are $12-7 k, 3 k^{2}, k^{2}-10 k$ Given that k is an integer, find the first term and the common difference.
ii) The $4^{\text {th }}$ term of an arithmetic sequence is 72 . The $11^{\text {th }}$ term is 51 . The sum of the first n terms is 1125 . Find the two possible values of n.

