2nd Year Assignment 18

- 1. A curve has the equation $y = \sin 5x + \cos 3x$. Find the equation of the tangent to the curve at the point $(\pi, -1)$
- 2. A curve has the equation $y = 2x^2 \sin x$. Show that the equation of the normal to the curve at the point with x-coordinate π is $x + (4\pi + 1)y \pi(8\pi^2 + 2\pi + 1) = 0$
- 3. A student is attempting to differentiate $\ln kx$. The student writes: $y = \ln kx$, $so \frac{dy}{dx} = k \ln kx$ Explain the mistake made by the student and state the correct derivative.
- 4. Prove, from first principles that the derivative of $\sin x$ is $\cos x$
- 5. Differentiate
 - a. $\sin^2 3x$ b. $e^{(x+1)^2}$ c. $\ln(\cos x)^2$ d. $\frac{1}{3+\cos 2x}$ e. $\sin(\frac{1}{x})$
- 6. A curve C has equation $y = (x + 3)^2 e^{3x}$ a. Find $\frac{dy}{dx}$ b. Find the gradient of C at the point where x = 2
- 7. Differentiate a. $(2 \sin x - 3 \cos x) \ln 3x$ b. $x^4 e^{7x-3}$
- 8. A curve C has equation $\frac{e^{2x}}{(x-2)^2}$, $x \neq 2$
 - a. Show that $\frac{dy}{dx} = \frac{Ae^{2x}(Bx-C)}{(x-2)^3}$, where A, B and C are integers to be found
 - b. Find the equation of the tangent of C at the point x = 1
- 9. Given that $f(x) = \frac{2x}{x+5} + \frac{6x}{x^2+7x+10}$, x > 0a. Show that $f(x) = \frac{2x}{x+2}$
 - b. Hence find f'(3)

10. The diagram shows part of the curve with equation

y = f(x), where $f(x) = x(1 + x) \ln x$, x > 0The point A is the minimum point of the curve

- a. Find f'(x)
- b. Hence show that the x-coordinate of A is the solution to the equation $x = e^{-\frac{1+x}{1+2x}}$

Test Yourself

Time yourself for 20 minutes for these two questions.

- A. $p(x) = \frac{9-3x-12x^2}{(1-x)(1+2x)}$. Show that p(x) can be written in the form $A + \frac{B}{1-x} + \frac{C}{1+2x}$, where A, B and C are constants to be found.
- B. i) The 4th, 5th and 6th terms in an arithmetic sequence are 12 7k, $3k^2$, $k^2 10k$

Given that k is an integer, find the first term and the common difference.

ii) The 4th term of an arithmetic sequence is 72. The 11th term is 51. The sum of the first n terms is 1125. Find the two possible values of n.