$\mathbf{2}^{\text {nd }}$ Year Assignment 16

1. a) Use the double angle formulae to prove that $\frac{1-\cos 2 x}{1+\cos 2 x} \equiv \tan ^{2} x$
b) Hence find for $-\pi \leq x \leq \pi$ all the solutions of $\frac{1-\cos 2 x}{1+\cos 2 x}=3$, leaving your answer in terms of π
2. a) Prove, by counter example, that the statement $\sec (A+B) \equiv \sec A+\sec B$ for all A and B is false.
b) Prove that $\tan \theta+\cot \theta \equiv 2 \operatorname{cosec} 2 \theta, \quad \theta \pm \frac{\mathrm{n} \pi}{2}, \quad n \in Z$
3. a) Sketch the curve with equation $y=(x-4)(2 x+3)$
b) The curve cuts the x-axis at A and B and the y-axis at C. State the co-ordinates of A, B and C .
c) Find the area of the region bounded by the curve and the x-axis
4. A particle of mass 0.3 kg is on a rough plane which is inclined at an angle of 30° to the horizontal. The particle is held at rest on the plane by a force of magnitude 3 N acting up the plane, in a direction parallel to a line of greatest slope of the plane. The particle is on the point of slipping up the plane. Find the coefficient of friction between the particle and the plane.
5. A plank of wood $A B$ has length 4 m and mass 40 kg . The plank is smoothly supported at A and at C, where $A C=3 \mathrm{~m}$, as shown in the figure above.
A man of mass 80 kg stands on the plank at a distance $d \mathrm{~m}$ from A.
The plank with the man standing on it remains in equilibrium with $A B$ horizontal, and the reactions on the rod at A and at C equal.
The plank is modelled as a uniform rod and the man as a particle.
Determine the value of d.
6. A particle is projected vertically upwards from a point O with speed $u \mathrm{~m} / \mathrm{s}$. Two seconds later it is still moving upwards and its speed is $\frac{1}{3} u \mathrm{~m} / \mathrm{s}$.
Find
(a) the value of u
(b) the time from the instant that the particle leaves O to the instant that it returns to O .
7. Solve the inequalities, giving your answer in set notation:
(a) $2 x^{2}-9 x+4 \leq 0$
(b) $2-p-3 p^{2} \geq 0$
(c) $9 x-2 x^{2} \leq 10$
8. Estimate the standard deviation and $30 \%-70 \%$ interpercentile range of each distribution:

a) | Score | $100-106$ | $107-113$ | $114-120$ | $121-127$ | $128-134$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Frequency | 6 | 11 | 22 | 9 | 2 |

b)

x	$2-4$	$4-7$	$7-10$	$10-15$
f	2	10	22	6

9. Given the mean \bar{x} and the variance, σ_{x}^{2} of the distribution X, find the mean \bar{y} and the variance, σ_{y}^{2} of the coded data Y :
(a) $\bar{x}=231, \sigma_{x}^{2}=19.5, \quad Y=\frac{1}{3} X-1$
(b) $\bar{x}=9.08, \sigma_{x}^{2}=1.5, \quad Y=5+\frac{1}{2} X$
(c) $\bar{x}=-7.13, \sigma_{x}^{2}=1.85, \quad Y=7-X$
(d) $\bar{x}=36, \sigma_{x}^{2}=12, \quad Y=X-10$
10. a) Sketch, in the interval $-2 \pi \leq x \leq 2 \pi$, the graph of $y=3+5 \operatorname{cosec} x$.
b) Hence deduce the range of values of k for which the equation $3+5 \operatorname{cosec} x=k$ has no solutions.

TEST YOURSELF

Give yourself 20 minutes to answer these questions.
If you finish early, check your answers.
I will mark your answers. Set your work out carefully.

1. A curve C is defined by the parametric equations $x=\sqrt{t}, y=t(9-t)$
a) Find a Cartesian equation of the curve in the form $y=f(x)$ and determine the domain and range of $f(x)$
b) Sketch C, showing clearly the coordinates of any turning points, endpoints and intersections with the coordinate axes.
2. A box of mass 5 kg sits on a smooth slope that is inclined at an angle of 30° to the horizontal. It is attached to alight scale-pan by a light inextensible string which passes over a smooth pulley, as shown in the diagram. The scale-pan carries two masses A and B. The mass of A is 2 kg and the mass of B is 5 kg . Work out the force exerted by A on B.

