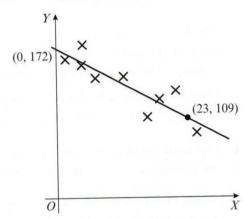
- 1 Data are coded using $Y = \log y$ and $X = \log x$ to give a linear relationship. The equation of the regression line for the coded data is Y = 1.2 + 0.4X.
 - a State whether the relationship between y and x is of the form $y = ax^n$ or $y = kb^x$.
 - **b** Write down the relationship between y and x and find the values of the constants.
- 2 Data are coded using $Y = \log y$ and X = x to give a linear relationship. The equation of the regression line for the coded data is Y = 0.4 + 1.6X.
 - a State whether the relationship between y and x is of the form $y = ax^n$ or $y = kb^x$.
 - **b** Write down the relationship between y and x and find the values of the constants.
- P 3 The scatter diagram shows the relationship between two sets of coded data, X and Y, where $X = \log x$ and $Y = \log y$. The regression line of Y on X is shown, and passes through the points (0, 172) and (23, 109).

The relationship between the original data sets is modelled by an equation of the form $y = ax^n$. Find, correct to 3 decimal places, the values of a and n.



P 4 The size of a population of moles is recorded and the data are shown in the table. T is the time, in months, elapsed since the beginning of the study and P is the number of moles in the population.

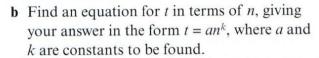
T	2	3	5	7	8	9
P	72	86	125	179	214	257

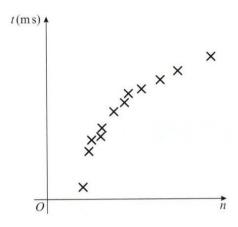
- a Plot a scatter diagram showing $\log P$ against T.
- **b** Comment on the correlation between $\log P$ and T.
- **c** State whether your answer to **b** supports the fact that the original data can be modelled by a relationship of the form $P = ab^T$.
- **d** Calculate the values of a and b for this model.
- e Give an interpretation of the value of b you calculated in part d.

Hint Think about what happens when the value of T increases by 1. When interpreting coefficients, refer in your answer to the context given in the question.

- 5 The time, t m s, needed for a computer algorithm to determine whether a number, n, is prime is recorded for different values of n. A scatter graph of t against n is drawn.
 - **a** Explain why a model of the form t = a + bn is unlikely to fit these data.

The data are coded using the changes of variable $y = \log t$ and $x = \log n$. The regression line of y on x is found to be y = -0.301 + 0.6x.





6 Data are collected on the number of units (c) of a catalyst added to a chemical process, and the rate of reaction (r).

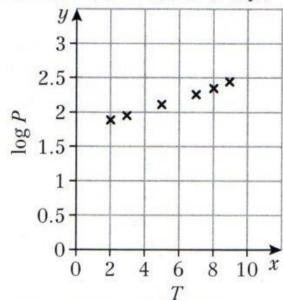
The data are coded using $x = \log c$ and $y = \log r$. It is found that a linear relationship exists between x and y and that the equation of the regression line of y on x is y = 1.31x - 0.41. Use this equation to determine an expression for r in terms of c.

7 The heights, $h \, \text{cm}$, and masses, $m \, \text{kg}$, of a sample of Galapagos penguins are recorded. The data are coded using $y = \log m$ and $x = \log h$ and it is found that a linear relationship exists between x and y. The equation of the regression line of y on x is y = 0.0023 + 1.8x.

Find an equation to describe the relationship between m and h, giving your answer in the form $m = ah^n$, where a and n are constants to be found.

Exercise 1A

- 1 **a** $y = \alpha x^n$
- **b** $\alpha = 15.8$ (3 s.f.), n = 0.4
- 2 a $y = kb^x$
- **b** k = 2.51, b = 39.8 (3 s.f.)
- 3 $\alpha = 1 \times 10^{172}$, n = -2.739 (3 d.p.)
- 4 a



T	2	3	5	7	8	9
$\log P$	1.86	1.93	2.10	2.25	2.33	2.41

- b Strong positive correlation
- **c** Yes the variables show a linear relationship wher $\log P$ is plotted against T.
- **d** a = 50.1 (3 s.f.), b = 1.2
- e For every month that passes, the population of moles increases by 20%.
- 5 **a** t = a + bn would show a linear relationship. This graph is not a straight line.
 - **b** a = 0.5, k = 0.6
- 6 $r = 0.389c^{1.31}$
- 7 a = 1.0, n = 1.8