Second Year Assignment 9

1 The data below show the height above sea level, x metres, and the temperature, y °C, at 7.00 a.m., on the same day in summer at nine places in Europe.

Height, x (m)	1400	400	280	790	390	590	540	1250	680
Temperature, y (°C)	6	15	18	10	16	14	13	7	13

The product moment correlation coefficient is -0.975. Use this value to test for negative correlation at the 5% significance level. Interpret your result in context. (3 marks)

2 From the large data set, the daily total rainfall, x mm, and the daily total sunshine, y hours, were recorded for Camborne on seven consecutive days in May 2015.

Rainfall, x	2.2	tr	1.4	4.4	tr	0.2	0.6
Sunshine, y	5.2	7.7	5.6	0.3	5.1	0.1	8.9

© Crown Copyright Met Office

a State the meaning of 'tr' in the table above.

- (1 mark)
- b Calculate the product moment correlation coefficient for these 7 days, stating clearly how you deal with the entries marked 'tr'.
 (2 marks)
- c With reference to your answer to part b, comment on the suitability of a linear regression model for these data. (2 marks)
- Data are collected on the number of units (c) of a catalyst added to a chemical process, and the rate of reaction (r).

The data are coded using $x = \log c$ and $y = \log r$. It is found that a linear relationship exists between x and y and that the equation of the regression line of y on x is y = 1.31x - 0.41. Use this equation to determine an expression for r in terms of c.

4	Members of a school book club read either murder mysteries (M) , ghost stories (G) or epic fiction (E) . $P(M) = 0.5$, $P(G) = 0.4$ and $P(E) = 0.6$. Given that no one reads both ghost stories and epic fiction and that $P(M \cap G) = 0.3$,								
	a draw a Venn dia	gram to illustrate the	n to illustrate these probabilities.						
	b Find:								
	i $P(M \cup G)$	ii $P((M \cap G) \cup$	$(M \cap E)$		(2 marks)				
	c Are the events C	and M independen	t? You must justify you	our answer.	(2 marks)				
5	Given that events <i>y</i> and <i>y</i> :	4 and B are independ	dent and that $P(A) = $	P(A) = x and $P(B) = y$, find, in terms of x					
	a $P(A \cap B)$				(2 marks)				
	b $P(A \cup B)$				(2 marks)				
	c $P(A \cup B')$				(2 marks)				
6	owners own a cat another type of period owner is chosen as the event of D is the E is the event of D is the E i	and 250 own a dog	Of the remaining ore than one type or that: emale a dog	these 450 are female. pet owners, 25 are most pet. 175 female own	ales who own				
	a $P(D' \cap C')$	b P(D F')	c P(<i>F</i> ' <i>C</i>)	d $P((D' \cap C') I$	F)				

In the diagram, AD and BC are arcs of circles with centre O, such that OA = OD = r cm, AB = DC = 10 cm and $\angle BOC = \theta$ radians.

a Given that the area of the shaded region is 40 cm^2 , show that $r = \frac{4}{\theta} - 5$.

b Given also that $r = 6\theta$, calculate the perimeter of the shaded region. (6)

(4)

The diagram shows the graph of $y = k \sec(\theta - \alpha)$

The curve crosses the y-axis at the point (0, 4), and the θ -coordinate of its minimum point is $\frac{\pi}{3}$

a State, as a multiple of π , the value of α . (1)

b Find the value of k. (2)

c Find the exact values of θ at the points where the graph crosses the line $y = -2\sqrt{2}$. (3)

9 The function f is defined by

$$f(x) = -\frac{5}{3}|x + 4| + 8, \ x \in \mathbb{R}$$

The diagram shows a sketch of the graph y = f(x).

a State the range of f.

(1)

b Give a reason why $f^{-1}(x)$ does not exist. (1)

c Solve the inequality $f(x) > \frac{2}{3}x + 4$. (5)

d State the range of values of k for which the equation $f(x) = \frac{5}{3}x + k$ has no solutions. (2)

10. Solve the following equations in the given intervals a)
$$(\sec\theta-\cos\theta)^2=\tan\theta-\sin^2\theta$$
, $0\leq\theta\leq\pi$

b)
$$3 \sec \frac{1}{2}\theta = 2 \tan^2 \frac{1}{2}\theta$$
, $0 \le \theta \le 360^\circ$

c)
$$\tan^2 2\theta = \sec 2\theta - 1$$
, $0 \le \theta \le 180^\circ$

d)
$$\sec^2 \theta - (1 + \sqrt{3})\tan \theta + \sqrt{3} = 1$$
, $0 \le \theta \le 2\pi$

TEST YOURSELF

Give yourself 20 minutes to answer these questions. If you finish early, check your answers. I will mark your answers. Set your work out carefully.

- When $(1 + ax)^n$ is expanded as a series in ascending powers of x, the coefficients of x and x^2 are -6 and 45 respectively.
 - **a** Find the value of a and the value of n.
 - **b** Find the coefficient of x^3 .
 - c Find the set of values of x for which the expansion is valid.
- B A geometric series is given by

$$6 - 24x + 96x^2 - \dots$$

The series is convergent.

a Write down a condition on x.

Given that
$$\sum_{r=1}^{\infty} 6 \times (-4x)^{r-1} = \frac{24}{5}$$

b Calculate the value of x.

Answers

1)

 H_0 : $\rho = 0$, H_1 : $\rho < 0$, critical value = -0.5822. Reject H₀. There is evidence that the greater the altitude, the lower the temperature.

- 2) a) A trace is an amount less than 0.05 mm
- b) -0.473 (3 s.f.) (treat "tr" as 0)
- c) The data shows a weak negative correlation so a linear model may not be best. There may be other variables affecting the relationship or a different model might be a better fit.
- 3) $r = 0.389c^{1.31}$

4

- 0.6
- ii 0.5
- c Not independent.

$$P(G' \cap M) = 0.2, P(G') \times P(M) = 0.6 \times 0.5 = 0.3$$

5 a xy

- **b** x + y xy **c** 1 y + xy

6) a)
$$\frac{6}{25}$$
 b) $\frac{13}{30}$ c) $\frac{29}{64}$ d) $\frac{31}{90}$

7) b) 28 cm

Answers

8 a
$$\frac{\pi}{3}$$

b
$$k = 2$$

a
$$\frac{\pi}{3}$$
 b $k=2$ **c** $-\frac{11\pi}{12}, -\frac{5\pi}{12}$

a
$$f(x) \leq 8$$

b The function is not one-to-one.

c
$$-\frac{32}{3} < x < -\frac{8}{7}$$

d
$$k > \frac{44}{3}$$

10. a)
$$0, \frac{\pi}{4}, \pi$$
 b) 120°

10. a)
$$0, \frac{\pi}{4}, \pi$$
 b) 120° c) 0°, 180°, d) $\frac{\pi}{4}, \frac{\pi}{3}, \frac{5\pi}{4}, \frac{4\pi}{3}$