Second Year Assignment 7

1. The functions f and g are given by f: $x \to 4x - 1$, $\{x \in \mathcal{R}\}\$ g: $x \to \frac{3}{2x-1}$, $\{x \in \mathcal{R}, x \neq \frac{1}{2}\}\$ Find in its simplest form: a) the inverse function f^{-1}

b) the composite function gf, stating its domain

c) the values of x for which 2 f(x) = g(x), giving your answer to 3 decimal places.

2. Prove that $\sec^2 \theta + \csc^2 \theta \equiv \sec^2 \theta \csc^2 \theta$

3. A train engine of mass 6400 kg is pulling a carriage of mass 1600 kg along a straight horizontal railway track. The engine is connected to the carriage by a shunt which is parallel to the direction of motion of the coupling. The shunt is modelled as a light rod. The engine provides a constant driving force of 12 000 N. the resistances to motion of the engine and the carriage are modelled as constant forces of magnitude R N and 2000 N respectively. Given that the acceleration of the engine and the carriage is $0.5 m s^{-2}$: a) find the value of R

b) show that the tension in the shunt is 2800 N.

4. a) Express $\frac{8x+4}{(1-x)(2+x)}$ as partial fractions.

b) Hence or otherwise expand $\frac{8x+4}{(1-x)(2+x)}$ in ascending powers of x as far as the term in x^2

c) State the set of values of x for which the expansion is valid.

5. Find the constant term in the expansion of $\left(\frac{x^2}{2} - \frac{2}{x}\right)^9$

6. a) Sketch the graphs of $y = \arcsin(x)$ and $y = \arccos(x)$ on the same diagram, $-1 \le x \le 1$

b) Use your sketch to state an approximate solution to the equation arc sin (x) = arc cos(x), $-1 \le x \le 1$

c) Find an exact solution to the equation
arc sin
$$(x) = \arccos(x)$$
, $-1 \le x \le 1$

7. Prove that the sum of a geometric series, with first term a, and common ration r, is given by $S = \frac{a(r^n-1)}{r-1}$

8. The shape BCD is a design for a logo.

The straight lines DB and DC are equal in length.

The curve BC is an arc of a circle with centre A and radius 6 cm.

The size of \angle BAC is 2.2 radians and AD = 4 cm.

Find (a) the area of the sector BAC, in cm^2 ,

(b) the size of \angle DAC, in radians to 3 significant figures,

(c) the complete area of the logo design, to the nearest cm^2

9. Solve the equation $\csc^2 2x - \cot 2x = 1$ for $0 \le x \le 180^\circ$

10. a) When θ is small, show that the equation $\frac{4\cos 3\theta - 2 + 5\sin \theta}{1 - \sin 2\theta}$ can be written as $9\theta + 2$ b) Hence write down the value of $\frac{4\cos 3\theta - 2 + 5\sin \theta}{1 - \sin 2\theta}$ when θ is small

TEST YOURSELF

Give yourself 20 minutes to answer these questions. If you finish early, check your answers. I will mark your answers. Set your work out carefully.

- 1. Solve, for $-180 \le \theta \le 180$, the equation, sec $(2\theta + 10) = -1.3$ Give your answers to 1 decimal place.
- 2. $f(x) = \arccos x \frac{\pi}{3}$, $x \in \mathcal{R}, -1 \le x \le 1$.
 - a) State the value of $f(-\frac{1}{2})$ in terms of π .
 - b) Solve the equation f(x) = 0.
 - c) Define the inverse function $f^{-1}(x)$ and state its domain.

Answers

8 a) 39.6 cm^2 b) 2.04 c) 61 cm^2

9. 22.5°, 45°, 112.5°, 135°

10. 2