## Second Year Assignment 7

1. The functions f and g are given by
$f: x \rightarrow 4 x-1, \quad\{x \in \mathcal{R}\}$
$g: x \rightarrow \frac{3}{2 x-1}, \quad\left\{x \in \mathcal{R}, x \neq \frac{1}{2}\right\}$
Find in its simplest form:
a) the inverse function $f^{-1}$
b) the composite function $g f$, stating its domain
c) the values of $x$ for which $2 f(x)=g(x)$, giving your answer to 3 decimal places.
2. Prove that $\sec ^{2} \theta+\operatorname{cosec}^{2} \theta \equiv \sec ^{2} \theta \operatorname{cosec}^{2} \theta$
3. A train engine of mass 6400 kg is pulling a carriage of mass 1600 kg along a straight horizontal railway track. The engine is connected to the carriage by a shunt which is parallel to the direction of motion of the coupling. The shunt is modelled as a light rod. The engine provides a constant driving force of 12000 N . the resistances to motion of the engine and the carriage are modelled as constant forces of magnitude $R \mathrm{~N}$ and 2000 N respectively. Given that the acceleration of the engine and the carriage is $0.5 \mathrm{~ms}^{-2}$ :
a) find the value of $R$
b) show that the tension in the shunt is 2800 N .
4. a) Express $\frac{8 x+4}{(1-x)(2+x)}$ as partial fractions.
b) Hence or otherwise expand $\frac{8 x+4}{(1-x)(2+x)}$ in ascending powers of x as far as the term in $x^{2}$
c) State the set of values of $x$ for which the expansion is valid.
5. Find the constant term in the expansion of $\left(\frac{x^{2}}{2}-\frac{2}{x}\right)^{9}$
6. a) Sketch the graphs of $y=\arcsin (x)$ and $y=\arccos (x)$ on the same diagram, $-1 \leq$ $x \leq 1$
b) Use your sketch to state an approximate solution to the equation

$$
\arcsin (x)=\arccos (x), \quad-1 \leq x \leq 1
$$

c) Find an exact solution to the equation

$$
\arcsin (x)=\arccos (\mathrm{x}), \quad-1 \leq x \leq 1
$$

7. Prove that the sum of a geometric series, with first term $a$, and common ration $r$, is given by $S=\frac{a\left(r^{n}-1\right)}{r-1}$
8. The shape BCD is a design for a logo.

The straight lines DB and DC are equal in length.
The curve $B C$ is an arc of a circle with centre $A$ and radius 6 cm .

The size of $\angle B A C$ is 2.2 radians and $A D=4 \mathrm{~cm}$.
Find (a) the area of the sector BAC , in $\mathrm{cm}^{2}$,
(b) the size of $\angle \mathrm{DAC}$, in radians to 3 significant figures,

(c) the complete area of the logo design, to the nearest $\mathrm{cm}^{2}$
9. Solve the equation

$$
\operatorname{cosec}^{2} 2 x-\cot 2 x=1 \quad \text { for } 0 \leq x \leq 180^{\circ}
$$

10. a) When $\theta$ is small, show that the equation $\frac{4 \cos 3 \theta-2+5 \sin \theta}{1-\sin 2 \theta}$ can be written as $9 \theta+2$
b) Hence write down the value of $\frac{4 \cos 3 \theta-2+5 \sin \theta}{1-\sin 2 \theta}$ when $\theta$ is small

## TEST YOURSELF

Give yourself 20 minutes to answer these questions.
If you finish early, check your answers.
I will mark your answers. Set your work out carefully.

1. Solve, for $-180 \leq \theta \leq 180$, the equation, $\sec (2 \theta+10)=-1.3$ Give your answers to 1 decimal place.
2. $f(x)=\arccos x-\frac{\pi}{3}, \quad x \in \mathcal{R},-1 \leq x \leq 1$.
a) State the value of $f\left(-\frac{1}{2}\right)$ in terms of $\pi$.
b) Solve the equation $f(x)=0$.
c) Define the inverse function $f^{-1}(x)$ and state its domain.

## Answers

1. a) $\frac{x+1}{4}$
b) $\frac{3}{8 x-3},, \quad\left\{x \in \mathcal{R}, x \neq \frac{3}{8}\right\}$
c) -0.076 and 0.826
2. a) 6000 N
4a) $\frac{4}{1-x}-\frac{4}{2+x}$
b) $2+5 x+\frac{7}{2} x^{2}$
c) $|x|<1$
5) 672
6. a)

b) $\approx 0.7$
c) $\frac{\sqrt{2}}{2}$
8 a) $39.6 \mathrm{~cm}^{2}$
b) 2.04
c) $61 \mathrm{~cm}^{2}$
7. $22.5^{\circ}, 45^{\circ}, 112.5^{\circ}, 135^{\circ}$
8. 2
