SEQUENCES AND SERIES

1 Write down the first five terms of the sequences with *n*th terms, u_n , given for $n \ge 1$ by

		_		
	a $u_n = 4n + 5$	b $u_n = (n+1)^2$	$\mathbf{c} u_n = 2^n$	d $u_n = \frac{n}{n+1}$
	$\mathbf{e} u_n = n^3 - 2n$	f $u_n = 1 - \frac{1}{3}n$	$\mathbf{g} u_n = 1 - \frac{1}{2n}$	$\mathbf{h} u_n = 32 \times \left(\frac{1}{2}\right)^n$
2	The <i>n</i> th term of each of	the following sequence	tes is given by $u_n = a$	$n+b$, for $n \ge 1$.
	Find the values of the c	constants a and b in eac	h case.	
	a 4, 7, 10, 13, 16,	b 0, 7, 14, 21	c	16, 14, 12, 10, 8,
	d 0.4, 1.7, 3.0, 4.3, 5.0	5, e 100, 83, 66	5, 49, 32, f	-13, -5, 3, 11, 19,
3	Find a possible express	ion for the <i>n</i> th term of	each of the following	sequences.
	a 1, 6, 11, 16, 21,	b 3, 9, 27, 81	c	2, 8, 18, 32, 50,
	d $\frac{1}{2}$, 1, 2, 4, 8,	e 22, 11, 0, -	-11, -22, f	0, 1, 8, 27, 64,
	g 4, 7, 12, 19, 28,	h $\frac{1}{3}, \frac{2}{5}, \frac{3}{7}, \frac{3}{7}$	$\frac{4}{9}, \frac{5}{11}, \dots$ i	1, 3, 7, 15, 31,
4	The <i>n</i> th term of a seque	ence, u_n , is given by		
	$u_n = c$	$+3^{n-2}$.		
	Given that $u_3 = 11$,			
	a find the value of the	constant c,		
	b find the value of u_6 .			
5	The <i>n</i> th term of a seque	ence, u_n , is given by		

$$u_n = n(2n+k).$$

Given that $u_6 = 2u_4 - 2$,

- **a** find the value of the constant *k*,
- **b** prove that for all values of *n*, $u_n u_{n-1} = 4n + 3$.
- 6 The *n*th term of a sequence, u_n , is given by

$$u_n = k^n - 3.$$

Given that $u_1 + u_2 = 0$,

- **a** find the two possible values of the constant k.
- **b** For each value of k found in part **a**, find the corresponding value of u_5 .
- 7 Write down the first four terms of each sequence.

a	$u_n = u_{n-1} + 4, n > 1, u_1 = 3$	b	$u_n = 3u_{n-1} + 1, n > 1, u_1 = 2$
c	$u_{n+1} = 2u_n + 5, n > 0, u_1 = -2$	d	$u_n = 7 - u_{n-1}, n \ge 2, u_1 = 5$
e	$u_n = 2(5 - 2u_{n-1}), n > 1, u_1 = -1$	f	$u_n = \frac{1}{10}(u_{n-1} + 20), n \ge 2, u_1 = 10$
g	$u_{n+1} = 1 - \frac{1}{3}u_n, n \ge 1, u_1 = 6$	h	$u_{n+1} = \frac{1}{2+u_n}, n \ge 1, u_1 = 0$

© Solomon Press

SEQUENCES AND SERIES

continued

8	In each case	write down a recurrence	relation that would	produce the give	n sequence
0	in cach case,	write down a recurrence	relation that would	produce the give	ii sequence.

a	5, 9, 13, 17, 21,	b	1, 3, 9, 27, 81,	c	62, 44, 26, 8, -10,
d	120, 60, 30, 15, 7.5,	e	4, 9, 19, 39, 79,	f	1, 3, 11, 43, 171,

9 Given that the following sequences can be defined by recurrence relations of the form $u_n = au_{n-1} + b$, n > 1, find the values of the constants *a* and *b* for each sequence.

a -4, -3, -1, 3, 11, ... **b** 0, 8, 4, 6, 5, ... **c** $7\frac{3}{4}$, $5\frac{1}{2}$, 4, 3, $2\frac{1}{3}$, ...

- 10 For each of the following sequences, find expressions for u_2 and u_3 in terms of the constant k.
 - **a** $u_n = 4u_{n-1} + 3k$, n > 1, $u_1 = 1$ **b** $u_{n+1} = ku_n + 5$, n > 0, $u_1 = 2$ **c** $u_n = 4u_{n-1} - k$, n > 1, $u_1 = k$ **d** $u_n = 2 - ku_{n-1}$, $n \ge 2$, $u_1 = -1$ **e** $u_{n+1} = \frac{u_n}{k}$, $n \ge 1$, $u_1 = 4$ **f** $u_{n+1} = \sqrt[3]{61k^3 + u_n^3}$, n > 0, $u_1 = k\sqrt[3]{3}$
- **11** A sequence is given by the recurrence relation

$$u_n = \frac{1}{2}(k + 3u_{n-1}), \quad n > 1, \quad u_1 = 2.$$

a Find an expression for u_3 in terms of the constant k.

Given that $u_3 = 7$,

- **b** find the value of k and the value of u_4 .
- 12 For the sequences given by the following recurrence relations, find u_4 and u_1 .

a $u_n = 3u_{n-1} - 2$, n > 1, $u_3 = 10$ **b** $u_{n+1} = \frac{3}{4}u_n + 2$, n > 0, $u_3 = 5$ **c** $u_{n+1} = 0.2(1 - u_n)$, n > 0, $u_3 = -0.2$ **d** $u_n = \frac{1}{2}\sqrt{u_{n-1}}$, n > 1, $u_3 = 1$

13 A sequence is defined by

$$u_{n+1} = u_n + c, n \ge 1, u_1 = 2,$$

where *c* is a constant. Given that $u_5 = 30$, find

- **a** the value of *c*,
- **b** an expression for u_n in terms of n.

14 The terms of a sequence u_1, u_2, u_3, \ldots are given by

$$= 3(u_{n-1} - k), n > 1,$$

where *k* is a constant. Given that $u_1 = -4$,

a find expressions for u_2 and u_3 in terms of k.

Given also that $u_3 = 7u_2 + 3$, find

 u_n

b the value of k,

c the value of u_4 .

15 A sequence of terms $\{t_n\}$ is defined, for n > 1, by the recurrence relation

$$t_n = kt_{n-1} + 2,$$

where *k* is a constant. Given that $t_1 = 1.5$,

a find expressions for t_2 and t_3 in terms of k.

Given also that $t_3 = 12$,

b find the possible values of *k*.