FUNCTIONS

1 Describe how the graph of y = f(x) is transformed to give the graph of **c** y = 3f(x-1) **d** y = 4 - f(x)**a** y = 2 + f(x + 3)**b** v = 2f(-x)**a** Express $x^2 + 6x + 2$ in the form $a(x+b)^2 + c$. 2 **b** Hence, describe two transformations that would map the graph of $y = x^2$ onto the graph of $y = x^2 + 6x + 2$. Each of the following graphs is translated by 3 units in the positive x-direction and then stretched 3 by a factor of 2 in the y-direction, about the x-axis. Find and simplify an equation of the graph obtained in each case. **b** $y = 3e^x$ **c** $y = x^2 - 3x + 1$ **d** $y = \frac{1}{x}$ **a** y = 2x + 7Describe in order two transformations that would map the graph of 4 **a** y = |x| onto the graph of y = -|3x| **b** $y = e^x$ onto the graph of $y = 5 + e^{-x}$ **d** $y = \ln x$ onto the graph of $y = 2 + 3 \ln x$ c $y = \frac{1}{x}$ onto the graph of $y = \frac{3}{x+4}$ 5

y = (2, 6) y = f(x) x

The diagram shows the curve with equation y = f(x) which is stationary at the point (2, 6). Showing the coordinates of the stationary point in each case, sketch on separate diagrams the graphs of

a y = 1 + f(x - 4) **b** y = 3 - f(x) **c** y = 2f(x + 1) **d** $y = \frac{1}{2}f(2x)$

6 The graph of $y = x^2 + 4x - 2$ undergoes the following three transformations:

first: translation by -2 units in the positive *x*-direction, second: stretch by a factor of 3 in the *y*-direction, about the *x*-axis, third: reflection in the *y*-axis.

Find and simplify an equation of the graph obtained.

- 7 **a** Express $2x^2 4x + 7$ in the form $a(x+b)^2 + c$.
 - **b** Hence, describe in order a sequence of transformations that would map the graph of $y = 2x^2 4x + 7$ onto the graph of $y = x^2$.

$$\mathbf{f}(x) \equiv x^3 - 3x^2 + 4, \ x \in \mathbb{R}.$$

- **a** Find the coordinates of the stationary points on the graph of y = f(x).
- **b** Hence, find the coordinates of the stationary points on each of the following graphs.

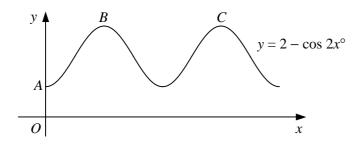
i y = -2f(x) **ii** $y = 3 + f(\frac{1}{2}x)$ **iii** $y = \frac{1}{4}f(x-2)$

FUNCTIONS

- **a** Describe clearly, in order, the sequence of transformations that would map the graph of $y = \sqrt{x}$ onto the graph of $y = 2 3\sqrt{x}$.
 - **b** Sketch the graph of $y = 2 3\sqrt{x}$ showing the coordinates of any points where the graph meets the coordinate axes.

10

9



The diagram shows part of the curve with equation $y = 2 - \cos 2x^\circ$, x > 0.

- **a** State the period of the curve.
- **b** Write down the coordinates of the point *A* where the curve meets the *y*-axis.
- c Write down the coordinates of B and C, the first two maximum points on the curve.
- 11 Sketch each of the following curves for x in the interval $0 \le x \le 360$. Show the coordinates of any turning points and the equations of any asymptotes.

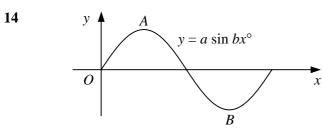
a $y = 3\cos 2x^{\circ}$	b $y = \tan(-2x^{\circ})$	$\mathbf{c} y = 1 + 2\sin x^{\circ}$
$\mathbf{d} y = -\sin (x + 60)^{\circ}$	$e y = 2\cos(x - 45)^\circ$	$\mathbf{f} y = 3 - \tan x^{\circ}$
$\mathbf{g} y = 2 + \cos \frac{1}{2} x^{\circ}$	h $y = 4 \sin \frac{3}{2} x^{\circ}$	$\mathbf{i} y = 1 - 2\cos x^{\circ}$

- 12 State the period of the curves with the equations
 - **a** $y = 2 \tan 3x^{\circ}$,
 - **b** $y = 1 + \sin kx^{\circ}$, giving your answer in terms of *k*.

13

$$f(x) \equiv 2\sin\frac{1}{2}x, \quad 0 \le x \le 2\pi.$$

- **a** Sketch the graph y = f(x).
- **b** State the coordinates of the maximum point of the curve.
- **c** Solve the equation $f(x) = \sqrt{2}$, giving your answers in terms of π .



The graph shows the curve $y = a \sin bx^\circ$, $0 \le x \le 180$.

The curve has a maximum at the point A with coordinates (45, 4).

- **a** Find the values of the constants *a* and *b*.
- **b** Write down the coordinates of the minimum point of the curve, *B*.