Proof by contradiction

- 1. Prove by contradiction that there is no greatest odd integer
- 2. Prove by contradiction that if n^2 is even, then n must be odd
- 3. Prove by contradiction that $\sqrt{2}$ is an irrational number
- 4. Prove by contradiction that there are infinitely many prime numbers
- 5. Prove by contradiction that if n^3 is even, then n is even
- 6. Prove by contradiction that if *pq* is even then at least one of *p* and *q* is even.