Friday Afternoon Quiz

Integration 1

Use partial fractions followed by integration by parts

$$\int_0^\infty \left[\frac{x^2 + 3x + 3}{(x+1)^3} \right] e^{-x} \sin x \ dx$$

Integration 1 Answer

@ SIME BY PARTIAL FRACTIONS FREAT

$$\frac{2^{2}+3x+3}{(x+1)^{3}} \equiv \frac{A}{x+1} + \frac{B}{(x+1)^{2}} + \frac{C}{(x+1)^{3}}$$

$$x^{2}+3x+3 \equiv A(x+1)^{2} + B(x+1) + C$$

$$x^{2}+3x+3 \equiv Ax^{2} + 2Ax + A + Bx + B + C$$

$$x^{2}+3x+3 \equiv Ax^{2} + (2A+B)x + (A+B+C)$$

$$H \text{ where } A = B = C = 1$$

● NEXT WE FIND THE INHELLY OF ESINX, BY PARTS TWICE

$$\int \frac{e^2 s_{MX}}{e^2 s_{MX}} dx = -\frac{e^2 c_{SX}}{e^2 c_{SX}} - \int \frac{e^2 c_{SX}}{e^2 c_{SX}} dx$$

$$\frac{e^2 c_{SX}}{e^2 c_{SX}} = -\frac{e^2 c_{SX}}{c_{SX}} - \left[e^2 c_{SX} + \int e^2 c_{SX} dx \right]$$

$$\int e^2 s_{MX} dx = -\frac{e^2 c_{SX}}{e^2 c_{SX}} - \left[e^2 c_{SX} + \int e^2 c_{SX} dx \right]$$

$$\int e^2 s_{MX} dx = -\frac{e^2 c_{SX}}{e^2 c_{SX}} - \left[e^2 c_{SX} + c_{SX} + \int e^2 c_{SX} dx \right]$$

$$2 \int e^2 s_{MX} dx = -\frac{e^2 c_{SX}}{e^2 c_{SX}} + c_{SX} + c_{SX}$$

$$\int e^2 s_{MX} dx = -\frac{e^2 c_{SX}}{e^2 c_{SX}} + c_{SX} + c_{SX}$$

$$\int e^2 s_{MX} dx = -\frac{e^2 c_{SX}}{e^2 c_{SX}} + c_{SX} + c_{SX}$$

● NEXT SPUT THE INDEGRAL WITO 3 of CARRY OUT INHERATION BY APRIS IN THE FIRST OF THIRD INHERAL BUT NOT IN THE SECOND CLEFT FOR CHURCHING)

$$\int_{\infty}^{\infty} \frac{x^2 + 3x + 3}{(x + 1)^3} \left[\underbrace{e^x \leq x \leq x}_{\infty} \right] dx = \int_{\infty}^{\infty} \underbrace{\frac{e^x \leq x \leq x}{e^x \leq x \leq x}}_{\infty} dx + \int_{\infty}^{\infty} \underbrace{\frac{e^x \leq x \leq x}{e^x \leq x \leq x}}_{\infty} dx + \int_{\infty}^{\infty} \underbrace{\frac{e^x \leq x \leq x}{e^x \leq x \leq x}}_{\infty} dx$$

$$\frac{1}{2 + 1} \frac{1}{(2 + 1)^{2}} = \frac{1}{2} \frac{1}{(2 + 1)^{2}$$

Integration 2

By suitably rewriting the numerator of the integrand, find a simplified expression for the following integral.

$$\int \frac{3\cos x + 2\sin x}{2\cos x + 3\sin x} dx$$

Integration 2 Answer

$$\frac{12}{13}x + \frac{5}{13}\ln|2\cos x + 3\sin x| + C$$

$$\int \frac{3\cos x + 2\sin x}{2\cos x + 3\sin x} dx = ?$$

MANIPULATE AS BUOUS

· REWRITE THE NUMERATOR AS

$$3\cos x + 2\sin x \equiv A\left(2\cos x + 3\sin x\right) + B\left(3\cos x - 2\sin x\right)$$

So IT OW BE DIVIDED SO IT BECOMES OF BY THE DENOMINATER THE FORM
$$\int \frac{f(x)}{f(x)} dx$$

• HINGE $\begin{cases} 24 + 3B = 3 \\ 3A - 2B = 2 \end{cases}$ $\times 2 \implies 4A + 6B = 6 \\ 9A - 6B = 6 \end{cases}$ $\Rightarrow 13A = 12$ $\Rightarrow 4 = 12$ $\Rightarrow 4 = 12$

· RETURNING TO THE INHERAC

$$= \int \frac{12}{13} \left(\frac{2\cos x + 3\sin x}{2\cos x + 3\sin x} \right) + \frac{5}{13} \left(\frac{3\cos x - 2\sin x}{2\cos x + 3\sin x} \right) dx$$

$$= \int \frac{12}{13} + \frac{5}{13} \left(\frac{3\cos x - 2\sin x}{2\cos x + 3\sin x} \right) dx$$

$$= \frac{12}{13} + \frac{5}{13} \left| h \left| 2\cos x + 3\sin x \right| + C$$

Integration 3

Use trigonometric identities to find a simplified expression for

$$\int \frac{\sin^8 x - \cos^8 x}{1 - \frac{1}{2}\sin^2 2x} \, dx \, .$$

Integration 3 Answer

$$-\frac{1}{2}\sin 2x + C$$

STAPTING FROM THE DIFFERENCE OF SQUARES IN THE NUMERATOR OF THE SINE DOUBLE ANOTHE IN THE ADJOINNATOR

ONEXT OPFATE A PREFECT SQUARE IN THE DEMONINATION AS FOLLOWS

... =
$$\int \frac{(\sin x - \cos x)(\sin x + \cos x)}{1^2 - 2\sin^2 x \cos^2 x} dx = \int \frac{(\sin x - \cos x)(\sin x + \cos x)}{(\sin x + \cos x)^2 - 2\sin^2 x \cos^2 x} dx$$

● EXPAND THE DIFFERENCE OF SQUARET IN THE WUNTRATOR of THE BRACKET IN THE DENOMINATOR

$$= \int \frac{-\cos 2x \left(\sin x + \cos x \right)}{\cos x + \sin x} dx = \int \cos 2x dx$$

Decision Maths

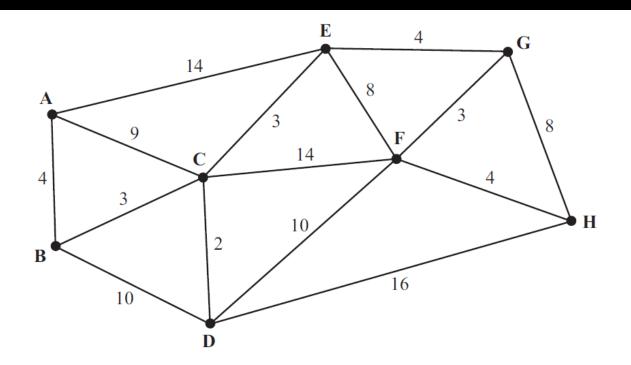


Figure 1

Figure 1 shows a network of roads between eight villages, A, B, C, D, E, F, G and H. The number on each arc gives the length, in miles, of the corresponding road.

(a) Use Dijkstra's algorithm to find the shortest distance from A to H.

Decision Maths Answer

The length of the shortest route is 21 miles

Shortest route: A B C E G F H

Name the artist

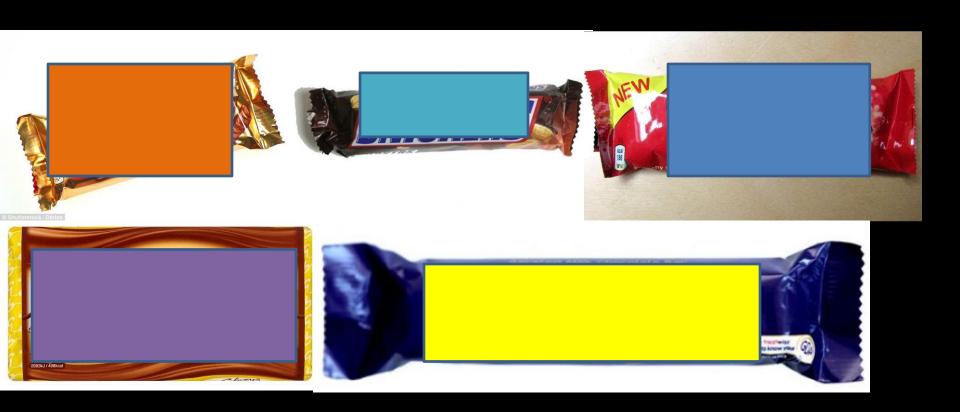
According to one American magazine, they produced some of the best albums in 2019

Name the artist Answers

James Blake

Joe Armon Jones

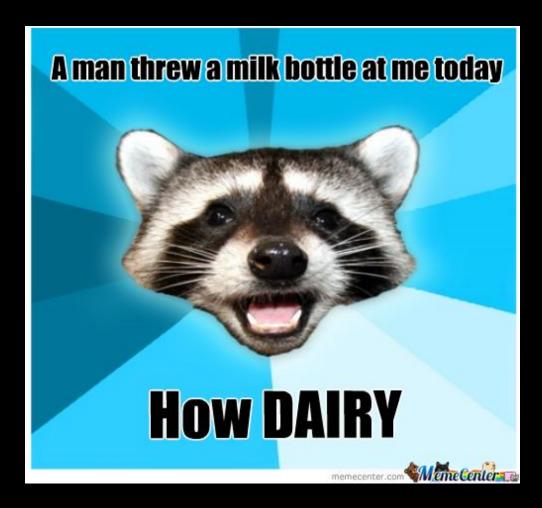
King Princess

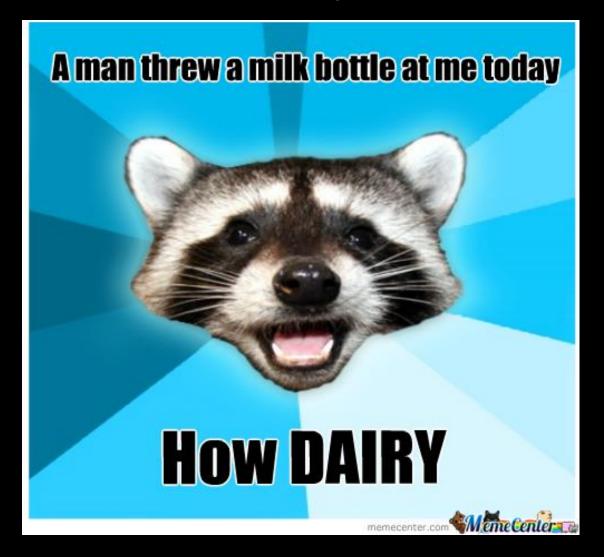


Bon Iver

Billy Eilish

According to one American magazine, they produced some of the best albums in 2019


Name the chocolate bar


Name the chocolate bar Answers

Is this funny?

Is this funny? YES

