The Last Lesson

(i) Given $x = \tan^2 4y$, $0 < y < \frac{\pi}{8}$, find $\frac{dy}{dx}$ as a function of x.

Write your answer in the form $\frac{1}{A(x^p + x^q)}$, where A, p and q are constants to be found.

(5)

(ii) The volume V of a cube is increasing at a constant rate of 2 cm 3 s $^{-1}$. Find the rate at which the length of the edge of the cube is increasing when the volume of the cube is 64 cm 3 .

(5)

6(i)
$$x = \tan^2 4y \Rightarrow \frac{dx}{dy} = 8 \tan 4y \sec^2 4y$$
 oe M1A1

$$\frac{dy}{dx} = \frac{1}{8 \tan 4y \sec^2 4y}, = \frac{1}{8 \tan 4y (1 + \tan^2 4y)} = \frac{1}{8\sqrt{x}(1+x)} = \frac{1}{8(x^{0.5} + x^{1.5})}$$
 M1,M1A1
(ii)
$$\frac{dV}{dt} = 2, \quad V = x^3 \Rightarrow \frac{dV}{dx} = 3x^2$$
 B1,B1
Uses $\frac{dV}{dt} = \frac{dV}{dx} \times \frac{dx}{dt}$ M1

$$\frac{dx}{dt}\Big|_{x=4} = \frac{2}{3x^2} = \frac{1}{24} (\text{cm s}^{-1})$$
 M1A1
(5) (10 marks)

Name The School

1 2 3

4

Name The School

- 1 = Dorothy Stringer,
- 2 = Blatchington Mill,
- 3 = Downlands
- 4 = Priory
- 5 = Patcham High

Figure 4

Figure 4 shows a sketch of part of the curve C with equation

$$y = \frac{x^2 \ln x}{3} - 2x + 4$$
, $x > 0$

The finite region S, shown shaded in Figure 4, is bounded by the curve C, the x-axis and the lines with equations x = 1 and x = 3.

(a) Complete the table below with the value of y corresponding to x = 2. Give your answer to 4 decimal places.

x	1	1.5	2	2.5	3
y	2	1.3041		0.9089	1.2958

(1)

(b) Use the trapezium rule, with all the values of y in the completed table, to obtain an estimate for the area of S, giving your answer to 3 decimal places.

(3)

(c) Use calculus to find the exact area of S.

Give your answer in the form $\frac{a}{b} + \ln c$, where a, b and c are integers.

(6)

(2)

(1)

- (d) Hence calculate the percentage error in using your answer to part (b) to estimate the area of S. Give your answer to one decimal place.
- (e) Explain how the trapezium rule could be used to obtain a more accurate estimate for the area of S.

12(a)	0.9242 exactly	B1	(II)
(b)	Area $\approx \frac{0.5}{2} ((2+1.2958+2\times(1.3041+'0.9242'+0.9089)))$	B1 M1	(1)
	=2.393	A1	(3)
			(3)
(c)	$\int \frac{x^2 \ln x}{3} - 2x + 4 \mathrm{d}x$		
	$= \frac{x^3}{9} \ln x - \int \frac{x^3}{9} \times \frac{1}{x} dx, -x^2 + 4x$	M1A1, B1	
	$= \frac{x^3}{9} \ln x - \frac{x^3}{27} \left(-x^2 + 4x \right)$	A1	
	Area = $\left[\frac{x^3}{9}\ln x - \frac{x^3}{27} - x^2 + 4x\right]_1^3 = (3\ln 3 - 1 - 9 + 12) - \left(-\frac{1}{27} - 1 + 4\right)$	dM1	
	$= \ln 27 - \frac{26}{27}$	A1	
			(6)
(d)	% error = $\pm \frac{ real - approx }{real} \times 100 = \text{Accept awrt } \pm 2.6\%$	M1A1	
(e)	Increase the number of 'strips'	B1	(2)
		(13 mar	(1) rks)

Name The County

1 = Cumbria, 2 = Hampshire, 3 = Leicestershire, 4 = Nottinghamshire, 5 = Gloucestershire, 6 = Herefordshire, 7 = Derbyshire, 8 = Devon, 9 = Essex, 10 = Wiltshire

Figure 2

The curve C has parametric equations

$$x = \ln(t+2), \quad y = \frac{4}{t^2} \quad t > 0$$

The finite region R, shown shaded in Figure 2, is bounded by the curve C, the x-axis and the lines with equations $x = \ln 3$ and $x = \ln 5$.

(a) Show that the area of R is given by the integral

The integral State p
$$\int_{1}^{3} \frac{dt}{t^{2}(t+1)} dt$$
and q
(3)

(b) Hence find an exact value for the area of R.

Write your answer in the form $(a + \ln b)$, where a and b are rational numbers.

(7)

(c) Find a cartesian equation of the curve C in the form y = f(x).

(2)

9 (a)
$$\frac{dx}{dt} = \frac{1}{t+2}, \quad \text{Area of } R = \int y \, dx = \int \frac{4}{t^2} \times \frac{1}{(t+2)} (dt)$$
Correct proof with limits and no errors Area = $\int_1^3 \frac{4}{t^2(t+2)} dt$

(b)
$$\frac{4}{t^2(t+2)} = \frac{A}{t} + \frac{B}{t^2} + \frac{C}{(t+2)} \text{ or } \frac{4}{t^2(t+2)} = \frac{A}{t^2} + \frac{B}{(t+2)}$$

$$4 = At(t+2) + B(t+2) + Ct^2$$
Sub $t = 0 \Rightarrow B = 2$
Sub $t = -2 \Rightarrow C = 1$
Compare $t^2 = A + C = 0 \Rightarrow A = -1$

$$\int_1^3 \frac{4}{t^2(t+2)} dt = \int_1^3 \frac{-1}{t} + \frac{2}{t^2} + \frac{1}{(t+2)} dt = \left[-\ln t - \frac{2}{t} + \ln(t+2) \right]_1^3$$

$$= \left(-\ln 3 - \frac{2}{3} + \ln 5 \right) - \left(-\ln 1 - \frac{2}{1} + \ln 3 \right)$$

B1, M1

A1*

B1

M1A1

M1A1

dM1A1

(2)

(3)

 $= \ln\left(\frac{5}{9}\right) + \frac{4}{3}$

(c) Sub $t = e^x - 2$ into $y = \frac{4}{t^2} \Rightarrow y = \frac{4}{(e^x - 2)^2}$, $(x > \ln 2)$ M1A1

(12 marks)

Solve these equations

For every equation, solve for $0 \le x \le 360^{\circ}$

- 1) $\sin x + \cos x = 0$
- 2) $\cot x = 0$
- 3) $\sin x = 0.5$
- 4) $\sec x = 0$
- 5) $3 \sin x + 4 \cos x = 6$

Solve these equations

For every equation, solve for $0 \le x \le 360^{\circ}$

1)
$$\sin x + \cos x = 0$$

2)
$$\cot x = 0$$

3)
$$\sin x = 0.5$$

4)
$$\sec x = 0$$

5)
$$3 \sin x + 4 \cos x = 6$$

Figure 1

The value of Lin's car is modelled by the formula

$$V = 18\,000e^{-0.2t} + 4000e^{-0.1t} + 1000, \quad t \ge 0$$

where the value of the car is V pounds when the age of the car is t years.

A sketch of t against V is shown in Figure 1.

(a) State the range of V.

(2)

According to this model,

(b) find the rate at which the value of the car is decreasing when t = 10. Give your answer in pounds per year.

(3)

(c) Calculate the exact value of t when V = 15 000.

(4)

An opinion without

3.14159

is just an onion.

Teacher asks student: What is the half of 8?

Student: Miss horizontally or vertically?

Teacher: What do mean?

Student: Horizontally it is o and vertically it

is 3.

JuicyQuotes.com

THE BEST JOKES TO SHARE

Toothpaste For Dinner.com

How many of these jokes are funny?

How many of these jokes are funny?

