Pure Test 3b. 50 marks. 1 hour

6. Express $\frac{4 x}{x^{2}-9}-\frac{2}{x+3}$ as a single fraction in its simplest form.
7.

Figure 1
Figure 1 shows a sketch of part of the graph of $y=g(x)$, where
$g(x)=3+\sqrt{x+2}, \quad x \geq-2$
(a) State the range of g .
(b) Find $\mathrm{g}^{-1}(x)$ and state its domain.
(c) Find the exact value of x for which

$$
\begin{equation*}
\mathrm{g}(x)=x \tag{4}
\end{equation*}
$$

(d) Hence state the value of a for which

$$
\mathrm{g}(a)=\mathrm{g}^{-1}(a)
$$

9. (a) Write $5 \cos \theta-2 \sin \theta$ in the form $R \cos (\theta+\alpha)$, where R and α are constants, $R>0$ and $0 \leqslant \alpha<\frac{\pi}{2}$

Give the exact value of R and give the value of α in radians to 3 decimal places.
(b) Show that the equation

$$
5 \cot 2 x-3 \operatorname{cosec} 2 x=2
$$

can be rewritten in the form

$$
5 \cos 2 x-2 \sin 2 x=c
$$

where c is a positive constant to be determined.
(c) Hence or otherwise, solve, for $0 \leqslant x<\pi$,

$$
5 \cot 2 x-3 \operatorname{cosec} 2 x=2
$$

giving your answers to 2 decimal places.
(Solutions based entirely on graphical or numerical methods are not acceptable.)
10.

Figure 2
Figure 2 shows a sketch of part of the curve C with equation

$$
y=2 \ln (2 x+5)-\frac{3 x}{2}, \quad x>-2.5
$$

The point P with x coordinate -2 lies on C.
(a) Find an equation of the normal to C at P. Write your answer in the form $a x+b y=c$, where a, b and c are integers.

The normal to C at P cuts the curve again at the point Q, as shown in Figure 2.
(b) Show that the x coordinate of Q is a solution of the equation

$$
\begin{equation*}
x=\frac{20}{11} \ln (2 x+5)-2 \tag{3}
\end{equation*}
$$

The iteration formula

$$
x_{n+1}=\frac{20}{11} \ln \left(2 x_{n}+5\right)-2
$$

can be used to find an approximation for the x coordinate of Q.
(c) Taking $x_{1}=2$, find the values of x_{2} and x_{3}, giving each answer to 4 decimal places.
11. Given that a and b are positive constants,
(a) on separate diagrams, sketch the graph with equation
(i) $y=|2 x-a|$
(ii) $y=|2 x-a|+b$

Show, on each sketch, the coordinates of each point at which the graph crosses or meets the axes.

Given that the equation

$$
|2 x-a|+b=\frac{3}{2} x+8
$$

has a solution at $x=0$ and a solution at $x=c$,
(b) find c in terms of a.
12. (i) Given $y=2 x\left(x^{2}-1\right)^{5}$, show that
(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{g}(x)\left(x^{2}-1\right)^{4}$ where $\mathrm{g}(x)$ is a function to be determined.
(b) Hence find the set of values of x for which $\frac{\mathrm{d} y}{\mathrm{~d} x} \geqslant 0$
(ii) Given

$$
x=\ln (\sec 2 y), \quad 0<y<\frac{\pi}{4}
$$

find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ as a function of x in its simplest form.

