
SECTION A: STATISTICS

Answer ALL questions.

1. An engineer believes that there is a relationship between the CO_2 emissions and fuel consumption for cars.

A random sample of 40 different car models (old and new) was taken and the CO₂ emission figures, *e* grams per kilometre, and fuel consumption, *f* miles per gallon, were recorded, as shown in Figure 1. The engineer calculates the product moment correlation coefficient for the 40 cars and obtains r = -0.803.

- (a) State what is measured by the product moment correlation coefficient.
- (b) State, with a reason, whether a linear regression model based on these data is reliable or not for a car when the fuel consumption is 60 mpg.

(1)

(1)

(c) For the linear regression model $e = 198 - 1.71 \times f$ write down the explanatory variable.

(1)

(d) State the definition of a hypothesis test.

(1)

(e) Test at 1% significance level whether or not the product moment correlation coefficient for CO_2 emissions and fuel consumption is less than zero. State your hypotheses clearly.

(3)

(Total 7 marks)

2. The table below shows the number of gold, silver and bronze medals won by two teams in an athletics competition.

	Gold	Silver	Bronze
Team A	29	17	18
Team C	21	23	17

The events G, S and B are that a medal is gold, silver or bronze respectively. Let A be the event that team A won a medal and C team C won a medal. A medal winner is selected at random. Find

- (a) P(G),
- (b) $P([A \cap S]')$.

independent. Give reasons for your answer.

- (c) Explain, showing your working, whether or not events S and A are statistically
- (d) Determine whether or not events B and C are mutually exclusive. Give a reason for your answer.
- (e) Given that 30% of the gold medal winners are female, 60% of the silver medal winners are female and 40% of the bronze medal winners are female, find the probability that a randomly selected medal winner is female.

(2)

(Total 10 marks)

- 3. The heights of a population of men are normally distributed with mean μ cm and standard deviation σ cm. It is known that 20% of the men are taller than 180 cm and 5% are shorter than 170 cm.
 - (a) Sketch a diagram to show the distribution of heights represented by this information.

(3)

(7)

(b) Find the value of μ and σ .

(c) Three men are selected at random, find the probability that they are all taller than 175 cm.

(2)

(Total 12 marks)

(2)

(2)

(2)

(2)

SECTION B: MECHANICS

Answer ALL questions.

4. Figure 5 shows an object of 3 kg sitting on a plane inclined at an angle θ to the horizontal. The coefficient of friction between the object and the plane is μ . The system is in limiting equilibrium.

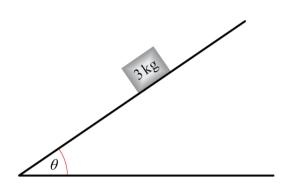


Figure 5

(a) Draw a diagram showing all the forces acting on the object. Describe the origin of each force using words.

(3)

(b) By resolving forces in two perpendicular directions, show that $\mu = \tan \theta$.

(6)

(4)

- (c) Hence, determine whether or not the object slips if $\mu = 0.3$ and $\theta = 30^{\circ}$.
- (d) As θ approaches 90°, state whether an object of any mass could remain in equilibrium. Explain your answer.

(2)

(Total 15 marks)

- 5. A car travels along a long, straight road for one hour, starting from rest. After t hours, its acceleration is $a \text{ km h}^{-2}$, where a = 180 360t.
 - (a) Find the speed of the car, in km h^{-1} in terms of t.

The speed limit is 40 km h^{-1} .

- (b) Find the range of times during which the car is breaking the speed limit. Give your answer in minutes.
- (c) Find the average speed of the car over the whole journey.

(5)

(4)

(2)

(Total 11 marks)

6. A ball is launched from the origin with speed 1 m s^{-1} . Its velocity vector makes an angle θ above the horizontal. It travels over flat ground and is modelled as a particle moving freely under gravity, as shown in Figure 4.

(In this question, take $g = 10 \text{ m s}^{-2}$.)

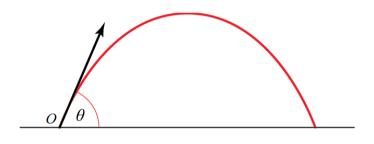


Figure 4

(a) Find the horizontal and vertical displacements of the particle at time *t* seconds. You should give your answer in terms of θ and *t*.

(4)

(b) Show that the horizontal distance travelled by the particle before it hits the ground is $\frac{\sin 2\theta}{2\theta}$.

(5)

(c) Find the value θ for which the horizontal distance travelled is a maximum.

(2)

(d) Describe one limitation of this model.

(1)

(Total 12 marks)

¹⁰