

Figure 2
Figure 2 shows a flag $X Y W Z X$.
The flag consists of a triangle $X Y Z$ joined to a sector $Z Y W$ of a circle with radius 5 cm and centre Y.

The angle of the sector, angle $Z Y W$, is 0.7 radians.
The points X, Y and W lie on a straight line with $X Y=7 \mathrm{~cm}$ and $Y W=5 \mathrm{~cm}$.
Find
(a) the area of the sector $Z Y W$ in cm^{2},
(b) the area of the flag, in cm^{2}, to 2 decimal places,
(c) the length of the perimeter, $X Y W Z X$, of the flag, in cm to 2 decimal places.

5 The circle C has equation

$$
x^{2}+y^{2}-2 x+14 y=0
$$

Find
(a) the coordinates of the centre of C,
(b) the exact value of the radius of C,
(c) the y coordinates of the points where the circle C crosses the y-axis.
(d) Find an equation of the tangent to C at the point $(2,0)$, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.

6 A geometric series with common ratio $r=-0.9$ has sum to infinity 10000 .
For this series,
(a) find the first term,
(b) find the fifth term,
(c) find the sum of the first twelve terms, giving this answer to the nearest integer.
(Total 7 marks)

7 (i) Find the value of y for which

$$
1.01^{y-1}=500
$$

Give your answer to 2 decimal places.
(ii) Given that

$$
2 \log _{4}(3 x+5)=\log _{4}(3 x+8)+1, \quad x>-\frac{5}{3}
$$

(a) show that

$$
\begin{equation*}
9 x^{2}+18 x-7=0 \tag{4}
\end{equation*}
$$

(b) Hence solve the equation

$$
2 \log _{4}(3 x+5)=\log _{4}(3 x+8)+1, \quad x>-\frac{5}{3}
$$

8 In this question solutions based entirely on graphical or numerical methods are not acceptable.
(i) Solve for $0 \leqslant x<360^{\circ}$,

$$
4 \cos \left(x+70^{\circ}\right)=3
$$

giving your answers in degrees to one decimal place.
(ii) Find, for $0 \leqslant \theta<2 \pi$, all the solutions of

$$
6 \cos ^{2} \theta-5=6 \sin ^{2} \theta+\sin \theta
$$

giving your answers in radians to 3 significant figures.

Figure 3
Figure 3 shows a sketch of part of the curve with equation

$$
y=7 x^{2}(5-2 \sqrt{x}), \quad x \geqslant 0
$$

The curve has a turning point at the point A, where $x>0$, as shown in Figure 3 .
(a) Using calculus, find the coordinates of the point A.

The curve crosses the x-axis at the point B, as shown in Figure 3 .
(b) Use algebra to find the x coordinate of the point B.

The finite region R, shown shaded in Figure 3, is bounded by the curve, the line through A parallel to the x-axis and the line through B parallel to the y-axis.
(c) Use integration to find the area of the region R, giving your answer to 2 decimal places.

1 Given $y=2 x(3 x-1)^{5}$,
(a) find $\frac{\mathrm{d} y}{\mathrm{~d} x}$, giving your answer as a single fully factorised expression.
(b) Hence find the set of values of x for which $\frac{\mathrm{d} y}{\mathrm{~d} x} \leqslant 0$

2 The function f is defined by

$$
\mathrm{f}(x)=\frac{6}{2 x+5}+\frac{2}{2 x 5}+\frac{60}{4 x^{2} \quad 25}, \quad x>4
$$

(a) Show that $\mathrm{f}(x)=\frac{A}{B x+C}$ where A, B and C are constants to be found.
(b) Find $\mathrm{f}^{-1}(x)$ and state its domain.

3 The value of a car is modelled by the formula

$$
V=16000 \mathrm{e}^{-k t}+A, \quad t \geqslant 0, t \in \mathbb{R}
$$

where V is the value of the car in pounds, t is the age of the car in years, and k and A are positive constants.

Given that the value of the car is $£ 17500$ when new and $£ 13500$ two years later,
(a) find the value of A,
(b) show that $k=\ln \left(\frac{2}{\sqrt{3}}\right)$
(c) Find the age of the car, in years, when the value of the car is $£ 6000$.

Give your answer to 2 decimal places.

Figure 1

Figure 1 shows a sketch of part of the curve C with equation

$$
y=\mathrm{e}^{-2 x}+x^{2}-3
$$

The curve C crosses the y-axis at the point A.
The line l is the normal to C at the point A.
(a) Find the equation of l, writing your answer in the form $y=m x+c$, where m and c are constants.

The line l meets C again at the point B, as shown in Figure 1.
(b) Show that the x coordinate of B is a solution of

$$
x=\sqrt{1+\frac{1}{2} x \quad \mathrm{e}^{2 x}}
$$

Using the iterative formula

$$
x_{n+1}=\sqrt{1+\frac{1}{2} x_{n} \mathrm{e}^{2 x_{n}}}
$$

with $x_{1}=1$
(c) find x_{2} and x_{3} to 3 decimal places.

Figure 2
Figure 2 shows part of the graph with equation $y=\mathrm{f}(x)$, where

$$
\mathrm{f}(x)=2|5-x|+3, \quad x \geqslant 0
$$

Given that the equation $\mathrm{f}(x)=k$, where k is a constant, has exactly one root,
(a) state the set of possible values of k.
(b) Solve the equation $\mathrm{f}(x)=\frac{1}{2} x+10$

The graph with equation $y=\mathrm{f}(x)$ is transformed onto the graph with equation $y=4 \mathrm{f}(x-1)$. The vertex on the graph with equation $y=4 \mathrm{f}(x-1)$ has coordinates (p, q).
(c) State the value of p and the value of q.

6 (i) Using the identity for $\tan (A \pm B)$, solve, for $-90^{\circ}<x<90^{\circ}$,

$$
\frac{\tan 2 x+\tan 32^{\circ}}{1-\tan 2 x \tan 32^{\circ}}=5
$$

Give your answers, in degrees, to 2 decimal places.
(ii) (a) Using the identity for $\tan (A \pm B)$, show that

$$
\begin{equation*}
\tan \left(3 \theta-45^{\circ}\right) \equiv \frac{\tan 3}{1+\tan 3}, \quad \theta \neq(60 n+45)^{\circ}, n \in \mathbb{Z} \tag{2}
\end{equation*}
$$

(b) Hence solve, for $0<\theta<180^{\circ}$,

$$
\begin{equation*}
(1+\tan 3 \theta) \tan \left(\theta+28^{\circ}\right)=\tan 3 \theta-1 \tag{5}
\end{equation*}
$$

