2. In the triangle $A B C, A B=16 \mathrm{~cm}, A C=13 \mathrm{~cm}$, angle $A B C=50^{\circ}$ and angle $B C A=x^{\circ}$ Find the two possible values for $x$, giving your answers to one decimal place.
(Total 4 marks)
3. $\mathrm{f}(x)=-6 x^{3}-7 x^{2}+40 x+21$
(a) Use the factor theorem to show that $(x+3)$ is a factor of $\mathrm{f}(x)$
(b) Factorise $\mathrm{f}(x)$ completely.
(c) Hence solve the equation

$$
6\left(2^{3 y}\right)+7\left(2^{2 y}\right)=40\left(2^{y}\right)+21
$$

giving your answer to 2 decimal places.
(Total 9 marks)
7. (i)
$2 \log (x+a)=\log \left(16 a^{6}\right)$, where $a$ is a positive constant
Find $x$ in terms of $a$, giving your answer in its simplest form.
(ii) $\quad \log _{3}(9 y+b)-\log _{3}(2 y-b)=2$, where $b$ is a positive constant

Find $y$ in terms of $b$, giving your answer in its simplest form.
8. (a) Show that the equation

$$
\cos ^{2} x=8 \sin ^{2} x-6 \sin x
$$

can be written in the form

$$
\begin{equation*}
(3 \sin x-1)^{2}=2 \tag{3}
\end{equation*}
$$

(b) Hence solve, for $0 \leqslant x<360^{\circ}$,

$$
\cos ^{2} x=8 \sin ^{2} x-6 \sin x
$$

giving your answers to 2 decimal places.
9. The first three terms of a geometric sequence are

$$
7 k-5, \quad 5 k-7, \quad 2 k+10
$$

where $k$ is a constant.
(a) Show that $11 k^{2}-130 k+99=0$

Given that $k$ is not an integer,
(b) show that $k=\frac{9}{11}$

For this value of $k$,
(c) (i) evaluate the fourth term of the sequence, giving your answer as an exact fraction,
(ii) evaluate the sum of the first ten terms of the sequence.
10.


Figure 2
Figure 2 shows a sketch of part of the curve with equation

$$
y=4 x^{3}+9 x^{2}-30 x-8, \quad-0.5 \leqslant x \leqslant 2.2
$$

The curve has a turning point at the point $A$.
(a) Using calculus, show that the $x$ coordinate of $A$ is 1

The curve crosses the $x$-axis at the points $B(2,0)$ and $C\left(\frac{1}{4}, 0\right)$
The finite region $R$, shown shaded in Figure 2, is bounded by the curve, the line $A B$, and the $x$-axis.
(b) Use integration to find the area of the finite region $R$, giving your answer to 2 decimal places.

1. Express $\frac{4 x}{x^{2} 9} \quad \frac{2}{x+3}$ as a single fraction in its simplest form.
2. Find the exact solutions, in their simplest form, to the equations
(a) $\mathrm{e}^{3 x-9}=8$
(b) $\ln (2 y+5)=2+\ln (4-y)$
3. 



Figure 1
Figure 1 shows a sketch of part of the graph of $y=\mathrm{g}(x)$, where

$$
\mathrm{g}(x)=3+\sqrt{x+2}, \quad x \geqslant-2
$$

(a) State the range of g .
(b) Find $\mathrm{g}^{-1}(x)$ and state its domain.
(c) Find the exact value of $x$ for which

$$
\begin{equation*}
\mathrm{g}(x)=x \tag{4}
\end{equation*}
$$

(d) Hence state the value of $a$ for which

$$
\mathrm{g}(a)=\mathrm{g}^{-1}(a)
$$

4. (a) Write $5 \cos \theta-2 \sin \theta$ in the form $R \cos (\theta+\alpha)$, where $R$ and $\alpha$ are constants, $R>0$ and $0 \leqslant \alpha<\frac{\pi}{2}$

Give the exact value of $R$ and give the value of $\alpha$ in radians to 3 decimal places.
(b) Show that the equation

$$
5 \cot 2 x-3 \operatorname{cosec} 2 x=2
$$

can be rewritten in the form

$$
5 \cos 2 x-2 \sin 2 x=c
$$

where $c$ is a positive constant to be determined.
(c) Hence or otherwise, solve, for $0 \leqslant x<\pi$,

$$
5 \cot 2 x-3 \operatorname{cosec} 2 x=2
$$

giving your answers to 2 decimal places.
(Solutions based entirely on graphical or numerical methods are not acceptable.)
5.


Figure 2

Figure 2 shows a sketch of part of the curve $C$ with equation

$$
y=2 \ln (2 x+5)-\frac{3 x}{2}, \quad x>-2.5
$$

The point $P$ with $x$ coordinate -2 lies on $C$.
(a) Find an equation of the normal to $C$ at $P$. Write your answer in the form $a x+b y=c$, where $a, b$ and $c$ are integers.

The normal to $C$ at $P$ cuts the curve again at the point $Q$, as shown in Figure 2.
(b) Show that the $x$ coordinate of $Q$ is a solution of the equation

$$
x=\frac{20}{11} \ln (2 x+5)-2
$$

The iteration formula

$$
x_{n+1}=\frac{20}{11} \ln \left(2 x_{n}+5\right)-2
$$

can be used to find an approximation for the $x$ coordinate of $Q$.
(c) Taking $x_{1}=2$, find the values of $x_{2}$ and $x_{3}$, giving each answer to 4 decimal places.
6. Given that $a$ and $b$ are positive constants,
(a) on separate diagrams, sketch the graph with equation
(i) $y=|2 x-a|$
(ii) $y=|2 x-a|+b$

Show, on each sketch, the coordinates of each point at which the graph crosses or meets the axes.

Given that the equation

$$
|2 x-a|+b=\frac{3}{2} x+8
$$

has a solution at $x=0$ and a solution at $x=c$,
(b) find $c$ in terms of $a$.

