Core 17

Part 1

1. Find

$$
\int\left(2 x^{5}-\frac{1}{4 x^{3}}-5\right) \mathrm{d} x
$$

giving each term in its simplest form.
2. Given

$$
y=\sqrt{x}+\frac{4}{\sqrt{x}}+4, \quad x>0
$$

find the value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when $x=8$, writing your answer in the form $a \sqrt{2}$, where a is a rational number.
(Total 5 marks)
3. A sequence $a_{1}, a_{2}, a_{3}, \ldots$ is defined by

$$
\begin{aligned}
a_{1} & =1 \\
a_{n+1} & =\frac{k\left(a_{n}+1\right)}{a_{n}}, \quad n \geqslant 1
\end{aligned}
$$

where k is a positive constant.
(a) Write down expressions for a_{2} and a_{3} in terms of k, giving your answers in their simplest form.

Given that $\quad a_{r}=10$
$r=1$
(b) find an exact value for k.
4. A company, which is making 140 bicycles each week, plans to increase its production. The number of bicycles produced is to be increased by d each week, starting from 140 in week 1 , to $140+d$ in week 2 , to $140+2 d$ in week 3 and so on, until the company is producing 206 in week 12.
(a) Find the value of d.

After week 12 the company plans to continue making 206 bicycles each week.
(b) Find the total number of bicycles that would be made in the first 52 weeks starting from and including week 1 .
(Total 7 marks)
5.

$$
\mathrm{f}(x)=x^{2}-8 x+19
$$

(a) Express $\mathrm{f}(x)$ in the form $(x+a)^{2}+b$, where a and b are constants.

The curve C with equation $y=\mathrm{f}(x)$ crosses the y-axis at the point P and has a minimum point at the point Q.
(b) Sketch the graph of C showing the coordinates of point P and the coordinates of point Q.
(c) Find the distance $P Q$, writing your answer as a simplified surd.
6. (a) Given $y=2^{x}$, show that

$$
2^{2 x+1}-17\left(2^{x}\right)+8=0
$$

can be written in the form

$$
\begin{equation*}
2 y^{2}-17 y+8=0 \tag{2}
\end{equation*}
$$

(b) Hence solve

$$
2^{2 x+1}-17\left(2^{x}\right)+8=0
$$

7. The curve C has equation $y=\mathrm{f}(x), x>0$, where

$$
\mathrm{f}^{\prime}(x)=30+\frac{6-5 x^{2}}{\sqrt{x}}
$$

Given that the point $P(4,-8)$ lies on C,
(a) find the equation of the tangent to C at P, giving your answer in the form $y=m x+c$, where m and c are constants.
(b) Find $\mathrm{f}(x)$, giving each term in its simplest form.
8.

Not to scale

Figure 1
The straight line l_{1}, shown in Figure 1, has equation $5 y=4 x+10$
The point P with x coordinate 5 lies on l_{1}
The straight line l_{2} is perpendicular to l_{1} and passes through P.
(a) Find an equation for l_{2}, writing your answer in the form $a x+b y+c=0$ where a, b and c are integers.

The lines l_{1} and l_{2} cut the x-axis at the points S and T respectively, as shown in Figure 1.
(b) Calculate the area of triangle SPT.
9. (a) On separate axes sketch the graphs of
(i) $y=-3 x+c$, where c is a positive constant,
(ii) $y=\frac{1}{x}+5$

On each sketch show the coordinates of any point at which the graph crosses the y-axis and the equation of any horizontal asymptote.

Given that $y=-3 x+c$, where c is a positive constant, meets the curve $y=\frac{1}{x}+5$ at two
distinct points,
(b) show that $(5-c)^{2}>12$
(c) Hence find the range of possible values for c.
10.

Figure 2
Figure 2 shows a sketch of part of the curve $y=\mathrm{f}(x), x \in \mathbb{R}$, where

$$
\mathrm{f}(x)=(2 x-5)^{2}(x+3)
$$

(a) Given that
(i) the curve with equation $y=\mathrm{f}(x)-k, x \in \mathbb{R}$, passes through the origin, find the value of the constant k,
(ii) the curve with equation $y=\mathrm{f}(x+c), x \in \mathbb{R}$, has a minimum point at the origin, find the value of the constant c.
(b) Show that $\mathrm{f}^{\prime}(x)=12 x^{2}-16 x-35$

Points A and B are distinct points that lie on the curve $y=\mathrm{f}(x)$.
The gradient of the curve at A is equal to the gradient of the curve at B.
Given that point A has x coordinate 3
(c) find the x coordinate of point B.

1. Find the first 4 terms, in ascending powers of x, of the binomial expansion of

$$
\left(3 \frac{1}{3} x\right)^{5}
$$

giving each term in its simplest form.
3. (a)

$$
y=5^{x}+\log _{2}(x+1), \quad 0 \leqslant x \leqslant 2
$$

Complete the table below, by giving the value of y when $x=1$

x	0	0.5	1	1.5	2
y	1	2.821		12.502	26.585

(b) Use the trapezium rule, with all the values of y from the completed table, to find an approximate value for

$$
{ }_{0}^{2}\left(5^{x}+\log _{2}(x+1)\right) \mathrm{d} x
$$

giving your answer to 2 decimal places.
(c) Use your answer to part (b) to find an approximate value for

$$
{ }_{0}^{2}\left(5+5^{x}+\log _{2}(x+1)\right) \mathrm{d} x
$$

giving your answer to 2 decimal places.
4.

Figure 1
Figure 1 is a sketch representing the cross-section of a large tent $A B C D E F$.
$A B$ and $D E$ are line segments of equal length.
Angle $F A B$ and angle $D E F$ are equal.
F is the midpoint of the straight line $A E$ and $F C$ is perpendicular to $A E$. $B C D$ is an arc of a circle of radius 3.5 m with centre at F.
It is given that

$$
\begin{aligned}
A F & =F E=3.7 \mathrm{~m} \\
B F & =F D=3.5 \mathrm{~m}
\end{aligned}
$$

$$
\text { angle } B F D=1.77 \text { radians }
$$

Find
(a) the length of the arc $B C D$ in metres to 2 decimal places,
(b) the area of the sector $F B C D$ in m^{2} to 2 decimal places,
(c) the total area of the cross-section of the tent in m^{2} to 2 decimal places.
5. The circle C has equation

$$
x^{2}+y^{2}-10 x+6 y+30=0
$$

Find
(a) the coordinates of the centre of C,
(b) the radius of C,
(c) the y coordinates of the points where the circle C crosses the line with equation $x=4$, giving your answers as simplified surds.

