GCE A level Mathematics (9MAO) Pure Mathematics 14a mark scheme

Guidance on the use of codes within this document

M1 - method mark. This mark is generally given for an appropriate method in the context of the question. This mark is given for showing your working and may be awarded even if working is incorrect.

A1 - accuracy mark. This mark is generally given for a correct answer following correct working.

B1 - working mark. This mark is usually given when working and the answer cannot easily be separated.

Some questions require all working to be shown; in such questions, no marks will be given for an answer with no working (even if it is a correct answer).

3.	(a) $7=5 a_{1}-3 \quad \Rightarrow a_{1}=.$.	M1
	$a_{1}=2$	A1
		(2)
	(b) $a_{3}=" 32$ " and $a_{4}=" 157 "$	M1
	$\sum_{r=1}^{r=4} a_{r}=a_{1}+a_{2}+a_{3}+a_{4}$	
	= "2"+ "7"+ "32"+ "157"	dM1
	$=198$	A1
		(3)
		(5 marks)

4.	(a) $80=5 \times 16$		
	$\sqrt{80}=4 \sqrt{5}$		B1
			(1)
	$\begin{aligned} & \text { Method } 1 \\ & \text { (b) } \begin{aligned} & \frac{\sqrt{80}}{\sqrt{5}+1} \text { or } \frac{c \sqrt{5}}{\sqrt{5}+1} \\ &= \frac{\sqrt{80}}{\sqrt{5}+1} \times \frac{\sqrt{5}-1}{\sqrt{5}-1} \text { or } \\ &=\frac{\sqrt{80}}{1+\sqrt{5}} \times \frac{1-\sqrt{5}}{1-\sqrt{5}} \\ &= \text { or } \\ &=\frac{4 \sqrt{5}-20}{-4} \\ &= 5-\sqrt{5} \end{aligned} \end{aligned}$	Method 2 $\begin{aligned} & (p+q \sqrt{ } 5)(\sqrt{ } 5+1)=\sqrt{ } 80 \\ & p \sqrt{ } 5+q \sqrt{ } 5+p+5 q=4 \sqrt{ } 5 \\ & p+5 q=0 \\ & p+q=4 \\ & p=5, q=-1 \end{aligned}$	B1ft M1 A1 A1cao
			$\begin{array}{r} (4) \\ \text { (} 5 \text { marks) } \\ \hline \end{array}$

7.(a)	$\mathrm{f}(x)=2 x^{3}-7 x^{2}+4 x+4$	
	$\mathrm{f}(2)=2(2)^{3}-7(2)^{2}+4(2)+4$	M1
	$=0$, and so $(x-2)$ is a factor.	A1
(b)	$\mathrm{f}(x)=\{(x-2)\}\left(2 x^{2}-3 x-2\right)$	$[2]$
	$=(x-2)(x-2)(2 x+1)$ or $(x-2)^{2}(2 x+1)$ or equivalent e.g. $=2(x-2)(x-2)\left(x+\frac{1}{2}\right)$ or $2(x-2)^{2}\left(x+\frac{1}{2}\right)$	M1 A1
		dM1 A1
		[4]

8.	$\left\{\int\left(\frac{x^{3}}{6}+\frac{1}{3 x^{2}}\right) \mathrm{d} x\right\}=\frac{x^{4}}{6(4)}+\frac{x^{-1}}{(3)(-1)}$	M1A1A1
	$\left\{\int_{1}^{\sqrt{3}}\left(\frac{x^{3}}{6}+\frac{1}{3 x^{2}}\right) \mathrm{d} x\right\}=\left(\frac{(\sqrt{3})^{4}}{24}+\frac{(\sqrt{3})^{-1}}{-1(3)}\right)-\left(\frac{(1)^{4}}{24}+\frac{(1)^{-1}}{-1(3)}\right)$	$\mathrm{dM1}$
	$=\left(\frac{9}{24}-\frac{1}{3 \sqrt{3}}\right)-\left(\frac{1}{24}-\frac{1}{3}\right)=\frac{2}{3}-\frac{1}{9} \sqrt{3}$	A1cso
		Total 5

10(a)	$S_{\infty}=\frac{20}{1-\frac{7}{8}} ;=160$	M1A1
(b)	$S_{12}=\frac{20\left(1-\left(\frac{7}{8}\right)^{12}\right)}{1-\frac{7}{8}} ;=127.77324 \ldots$	M1A1
	\begin{tabular}{\|c	c
\hline		
\end{tabular}	[2]	
(c)	$160-\frac{20\left(1-\left(\frac{7}{8}\right)^{N}\right)}{1-\frac{7}{8}}<0.5$	M1
	$160\left(\frac{7}{8}\right)^{N}<(0.5)\left(\frac{7}{8}\right)^{N}<\left(\frac{0.5}{160}\right)$	dM1
	$N \log \left(\frac{7}{8}\right)<\log \left(\frac{0.5}{160}\right)$	M1
	$N>\frac{\log \left(\frac{0.5}{160}\right)}{\log \left(\frac{7}{8}\right)}=43.19823 \ldots \Rightarrow N=44$	A1 cso
		Total 8

11.	(i) $9 \sin \left(\theta+60^{\circ}\right)=4 ; 0 \leq \theta<360^{\circ}$ (ii) $2 \tan x-3 \sin x=0 ;-\pi \leq x<\pi$	
(i)	$\begin{array}{ll} \sin \left(\theta+60^{\circ}\right)=\frac{4}{9}, \text { so }\left(\theta+60^{\circ}\right)=26.3877 \ldots \\ (\alpha=26.3877 \ldots) \end{array}$	M1
	So, $\theta+60^{\circ}=\{153.6122 \ldots, 386.3877 \ldots\}$	M1
	and $\theta=\{93.6122 \ldots, 326.3877 . .$.	A1 A1
	Both answers are cso and must come from correct work	
		[4]
(ii)	$2\left(\frac{\sin x}{\cos x}\right)-3 \sin x=0$	M1
	$2 \sin x-3 \sin x \cos x=0$	
	$\sin x(2-3 \cos x)=0$	
	$\cos x=\frac{2}{3}$	A1
	$x=\operatorname{awrt}\{0.84,-0.84\}$	A1A1ft
	$\{\sin x=0 \Rightarrow\} x=0$ and $-\pi$	B1
		[5]
		Total 9

12.

(a)

Graph of $y=3^{x}$ and solving $3^{2 x}-9\left(3^{x}\right)+18=0$	
	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$
	[2]
$\left(3^{x}\right)^{2}-9\left(3^{x}\right)+18=0$ or $y=3^{x} \Rightarrow y^{2}-9 y+18=0$	M1
$\left\{(y-6)(y-3)=0\right.$ or $\left(3^{x}-6\right)\left(3^{x}-3\right)=0$ \}	
$y=6, y=3 \quad$ or $3^{x}=6,3^{x}=3$	A1
$\begin{aligned} & \left\{3^{x}=6 \Rightarrow\right\} x \log 3=\log 6 \\ & \text { or } x=\frac{\log 6}{\log 3} \text { or } x=\log _{3} 6 \end{aligned}$	dM1
$x=1.63092 . .$.	A1cso
$x=1$	B1
	[5]
	Total 7
Mark (a) and (b) together	

13. (a)

$O Q^{2}=(6 \sqrt{5})^{2}+4^{2}$ or $O Q=\sqrt{(6 \sqrt{5})^{2}+4^{2} \quad\{=14\}} \mathbf{\text { M1 }}$	
$y_{Q}=\sqrt{14^{2}-11^{2}}$	
$=\sqrt{75}$ or $5 \sqrt{3}$	dM1
	A1cso
$(x-11)^{2}+(y-5 \sqrt{3})^{2}=16$	[3]
	M1A1
	[2]

14.(a)
(b)

$x^{2}+x-6=(x+3)(x-2)$	B1
$\frac{x}{x+3}+\frac{3(2 x+1)}{(x+3)(x-2)}=\frac{x(x-2)+3(2 x+1)}{(x+3)(x-2)}$	M1
$=\frac{x^{2}+4 x+3}{(x+3)(x-2)}$	A1
$=\frac{(x y+3)(x+1)}{(x+3)(x-2)}$	
$=\frac{(x+1)}{(x-2)}$	A1*
	(4)
One end either $(y)>1,(y) \geqslant 1$ or $(y)<4,(y) \leqslant 4$	B1
$1<y<4$	B1
	(2)
Attempt to set	
Either $g(x)=x$ or $g(x)=g^{-1}(x)$ or $g^{-1}(x)=x$ or $g^{2}(x)=x$	
$\frac{(x+1)}{(x-2)}=x \quad \frac{x+1}{x-2}=\frac{2 x+1}{x-1} \quad \frac{2 x+1}{x-1}=x \quad \frac{\frac{x+1}{x-2}+1}{\frac{x+1}{x-2}-2}=x$	M1
$x^{2}-3 x-1=0 \Rightarrow x=\ldots$	A1, dM1
$a=\frac{3+\sqrt{ } 13}{2} \mathrm{oe}(1.5+\sqrt{3.25})$	A1
(4)	
	$\begin{gathered} (10 \\ \text { marks }) \end{gathered}$

