Question 1 (**)

A ladder of length 2a and mass m, has one end A on smooth horizontal ground and the other end B against a smooth vertical wall.

The ladder is kept in equilibrium by a horizontal force of magnitude $\frac{1}{3}mg$ acting at a point C on the ladder, where $AC = \frac{1}{2}a$, as shown in the figure above.

The angle between the ladder and the vertical wall is $\boldsymbol{\theta}$.

By modelling the ladder as a uniform rod find $tan \theta$

Question 2 (**+)

The figure above shows a ladder AB resting in equilibrium with one end A on rough horizontal ground and the other end B against a smooth vertical wall. The ladder is modelled as a uniform rod of length 5 metres and mass $20 \, \text{kg}$, and lies in a vertical plane perpendicular to the wall and the ground, inclined at an angle φ to the horizontal.

When a person of mass 60 kg, modelled as a particle, stands at a point C on the ladder, where AC = 4 metres the ladder is at the point of slipping.

Given that the coefficient of friction between the ladder and the ground is $\frac{1}{4}$, find ...

- a) ... the magnitude of the frictional force of the ground on the ladder
- b) ... the value of φ , to the nearest degree.

Question 3 (**+)

The figure above shows a uniform ladder AB of length 2a and of mass m resting with the end A on rough horizontal ground and the end B against a smooth vertical wall. The ladder is inclined at an angle θ to the ground.

When a child of mass 2m is standing on the ladder at B, the ladder is about to slip.

Given that the coefficient of friction between the ladder and the ground is $\frac{5}{12}$, find the value of θ .

Question 4 (*)**

A uniform ladder AB of mass m and length 2a has one of its end A on rough horizontal ground and the other end B against a smooth vertical wall.

The ladder lies in a vertical plane perpendicular to the wall and the ground, and makes an angle of 30° with the vertical wall.

The coefficient of friction between the ladder and the ground is $\frac{1}{3}$.

The greatest distance from A that a man of mass 4m can walk up this ladder is ka, where k is a positive constant.

By modelling the man as a particle and the ladder as a uniform rod, determine the value of k.

Question 5 (***)

The figure above shows a uniform rod AB of length 8 metres and of mass 15kg. The rod is resting in equilibrium with the end A on rough horizontal ground and the point C, where AC = 6 metres, on a smooth peg. The rod is inclined at 60° to the ground.

- a) Determine in any order ...
 - i. ... the reaction on the rod at the peg.
 - ii. ... the normal reaction on the rod at the ground.
 - iii. ... the friction acting on the rod.

The coefficient of friction between the rod and the ground is denoted by μ .

b) Find the range of the possible values of μ .

Question 6 (***)

A non uniform ladder of weight 180 N and length 6 metres, rests with its end A on smooth horizontal ground and its end B against a rough vertical wall. The coefficient of friction between the ladder and the wall is $\frac{1}{4}$.

The centre of mass of the ladder is 1.5 metres from A.

The ladder lies in a vertical plane perpendicular to the wall and the ground, and is inclined at an angle θ to the horizontal, where $\tan \theta = 2$.

A man can just prevent the ladder from sliding down the wall by pushing the bottom of the ladder with a horizontal force F.

By modelling the ladder as a non uniform rod determine the value of F.

Question 7 (***)

The figure above shows a plank AB resting on a smooth peg. The plank is modelled a uniform rod of weight W N and of length 4.8 metres, resting on the peg at the point C, where AC is 3.2 metres.

The end A of the plank rests in limiting equilibrium on rough ground, where the coefficient of friction between the plank and the ground is $\frac{9}{13}$.

The plank is inclined at angle θ to the horizontal, where $\tan \theta = \frac{3}{4}$. The points A, B and C lie in a vertical plane which is perpendicular to the ground.

Given that the magnitude of the normal reaction of the ground at A is 65N, find in any order ...

- a) ... the value of W.
- b) ... the magnitude of the force between the plank and the peg.

Question 8 (***)

The figure above shows a uniform rod AB of length 3 metres and of mass 20 kg smoothly hinged at the point A, which lies on a vertical wall. A particle of mass 10 kg is suspended from the end B of the rod. The rod is kept in a horizontal position by a light inextensible string BC, where C lies on the same wall vertically above A.

The plane ABC is perpendicular to the wall and the angle ABC is 30°.

- a) Determine the tension in the string.
- b) Show that the reaction at the hinge has magnitude 55?

Question 9 (***+)

The figure above shows a uniform rod AB of length 2a and of mass m smoothly hinged at the point A, which lies on a vertical wall.

The rod is kept in a horizontal position by a light inextensible string BC, where C lies on the same wall vertically above A.

The plane ABC is perpendicular to the wall and the angle ABC is denoted by θ .

a) Given that $\tan \theta = \frac{1}{2}$, $\in \mathbb{R}^{3}$

the tension in the string

b) is the magnitude of the reaction at the hinge tension in the string.

> Estate which
magnitude as the

Scanned with CamScanner

Question 10 (***+)

The figure above shows a uniform rod AB, of length 2.5 metres and mass 10 kg, with one of its ends A smoothly hinged vertical wall.

The rod is kept in equilibrium in a horizontal position by a light rigid strut DC, where D lies on the same wall vertically below A and C lies on the rod such that |AC| = |AD| = 1 metre.

A particle of mass 5 kg is placed at B. The plane ACD is perpendicular to the wall.

- a) Calculate the force exerted by the strut on the rod.
- b) Determine the magnitude and direction of the force exerted by the hinge on the rod AB.