[In this question **i** and **j** are perpendicular unit vectors in a horizontal plane.] A particle P moves in such a way that its velocity \mathbf{v} m s⁻¹ at time t seconds is given by $\mathbf{v} = (3t^2 - 1)\mathbf{i} + (4t - t^2)\mathbf{j}$. Find the magnitude of the acceleration of P when t = 1. (a) (5) Given that, when t = 0, the position vector of P is **i** metres, (5)

find the position vector of P when t = 3. (b)

Two ships P and Q are travelling at night with constant velocities. At midnight, P is at the point with position vector (20i + 10j) km relative to a fixed origin O. At the same time, Q is at the point with position vector $(14\mathbf{i} - 6\mathbf{j})$ km. Three hours later, P is at the point with position vector (29i + 34j) km. The ship Q travels with velocity 12j km h⁻¹. At time t hours after midnight, the position vectors of P and Q are p km and q km respectively. Find

(a) the velocity of P, in terms of i and j,

At time t hours after midnight, the distance between P and Q is d km.

(c) By finding an expression for \overrightarrow{PQ} , show that

$$d^2 = 25t^2 - 92t + 292.$$
(5)

Weather conditions are such that an observer on P can only see the lights on Q when the distance between P and Q is 15 km or less. Given that when t = 1, the lights on Q move into sight of the observer,

(d) find the time, to the nearest minute, at which the lights on Q move out of sight of the observer.

A golf ball P is projected with speed 35 m s⁻¹ from a point A on a cliff above horizontal ground. The angle of projection is α to the horizontal, where tan $\alpha = \frac{4}{3}$. The ball moves freely under gravity and hits the ground at the point B, as shown in Figure 4.

(a) Find the greatest height of P above the level of A.

(3)

(2)

(4)

The horizontal distance from A to B is 168 m.

- (b) Find the height of A above the ground.
- By considering energy, or otherwise,
- (c) find the speed of P as it hits the ground at B.

(6)

(a)	$\mathbf{v}_{P} = \{(29\mathbf{i} + 34\mathbf{j}) - (20\mathbf{i} + 10\mathbf{j})\}/3 = (3\mathbf{i} + 8\mathbf{j}) \text{ km h}^{-1}$	M1 A1 (2)
(b)	p = (20i + 10j) + (3i + 8j)t	M1 A1√
	q = (14i - 6j) + 12tj	M1 A1 (4)
(c)	q - p = (-6 - 3t)i + (-16 + 4t)j	M1 A1
	$d^2 = (-6 - 3t)^2 + (-16 + 4t)^2$	M1
	$= 36 + 36t + 9t^2 + 16t^2 - 128t + 256$	M1
	$= 25t^2 - 92t + 292 \tag{(*)}$	A1 (cso) (5)
(d)	$25t^2 - 92t + 292 = 225$	M1
	$25t^2 - 92t + 67 = 0$	A1
	(t-1)(25t-67) = 0	M1
	<i>t</i> = 67/25 or 2.68	A1
	time \approx 161 mins, or 2 hrs 41 mins, or 2.41 am, or 0241	A1

(5)

		(5)
(a)	$0 = (35 \sin \alpha)^2 - 2gh$	M1 A1
	h = 40 m	AI (3)
(b)	$x = 168 \implies 168 = 35 \cos \Box \cdot t (\Rightarrow t = 8s)$	M1 A1
	1	
	At $t = 8$, $y = 35 \sin \alpha \times t - \frac{1}{2}gt^2$ (= 28.8 - $\frac{1}{2}gt^2$ = -89.6 m)	M1 A1
(c)	Hence height of $A = 89.6 \text{ m}$ or 90 m	DM1 A1
		(6)
	$\frac{1}{2}mv^2 = 1/2.m.35^2 + mg.89.6$	M1 A1
	$\Rightarrow v = 54.6 \text{ or } 55 \text{ m s}^{-1}$	A1
		(3)

		1	
1			
(a)	dv	M1	Differentiate v to obtain a.
	$\mathbf{a} = \frac{d\mathbf{v}}{dt} = 6t\mathbf{i} + (4 - 2t)\mathbf{j}$	A1	Accept column vector or i and j components dealt with separately.
	When $t = 1$, $\mathbf{a} = 6\mathbf{i} + 2\mathbf{j}$	DM1	Substitute $t = 1$ into their a . Dependent on $1^{st} M1$
	$ \mathbf{a} = \sqrt{6^2 + 2^2} = \sqrt{40} = 6.32 \text{ (m s}^{-2}\text{)}$	DM1	Use of Pythagoras to find the magnitude of their a . Allow with their t. Dependent on $1^{st} M1$
		A1	Accept awrt 6.32, 6.3 or exact equivalents.
		(5)	
(b)	$\mathbf{r} = \int (3t^2 - 1)\mathbf{i} + (4t - t^2)\mathbf{j} \mathrm{d}t$	M1	Integrate v to obtain r
	$= (t^{3} - t + C)\mathbf{i} + (2t^{2} - \frac{1}{3}t^{3} + D)\mathbf{j}$	A1	Condone C, D missing
	$t = 0, \mathbf{r} = \mathbf{i} \Longrightarrow C = 1, D = 0$	DM1	Use $t = 0$, $\mathbf{r} = \mathbf{i}$ to find $C \& D$
	When $t = 3$, $r = 25i + 9j$ (m)	DM1	Substitute $t = 3$ with their $C \& D$ to find r . Dependent on both previous Ms.
		A1	cao. Must be a vector.
		(5)	
L		10	