[In this question \mathbf{i} and \mathbf{j} are perpendicular unit vectors in a horizontal plane.]
A particle P moves in such a way that its velocity $\mathbf{v} \mathrm{m} \mathrm{s}^{-1}$ at time t seconds is given by $\mathbf{v}=\left(3 \mathrm{t}^{2}-1\right) \mathbf{i}+\left(4 \mathrm{t}-\mathrm{t}^{2}\right) \mathbf{j}$.
(a) Find the magnitude of the acceleration of P when $t=1$.

Given that, when $t=0$, the position vector of P is \mathbf{i} metres,
(b) find the position vector of P when $\mathrm{t}=3$.

Two ships P and Q are travelling at night with constant velocities. At midnight, P is at the point with position vector $(20 \mathbf{i}+10 \mathbf{j}) \mathrm{km}$ relative to a fixed origin O. At the same time, Q is at the point with position vector $(14 \mathbf{i}-6 \mathbf{j}) \mathrm{km}$. Three hours later, P is at the point with position vector $(29 \mathbf{i}+34 \mathbf{j}) \mathrm{km}$. The ship Q travels with velocity $12 \mathbf{j} \mathrm{~km} \mathrm{~h}^{-1}$. At time t hours after midnight, the position vectors of P and Q are $\mathbf{p} \mathrm{km}$ and $\mathbf{q} \mathrm{km}$ respectively. Find
(a) the velocity of P, in terms of \mathbf{i} and \mathbf{j},
(b) expressions for \mathbf{p} and \mathbf{q}, in terms of t, \mathbf{i} and \mathbf{j}.

At time t hours after midnight, the distance between P and Q is $d \mathrm{~km}$.
(c) By finding an expression for $\overrightarrow{P Q}$, show that

$$
d^{2}=25 t^{2}-92 t+292
$$

Weather conditions are such that an observer on P can only see the lights on Q when the distance between P and Q is 15 km or less. Given that when $t=1$, the lights on Q move into sight of the observer,
(d) find the time, to the nearest minute, at which the lights on Q move out of sight of the observer.

Figure 4

A golf ball P is projected with speed $35 \mathrm{~m} \mathrm{~s}^{-1}$ from a point A on a cliff above horizontal ground. The angle of projection is α to the horizontal, where $\tan \alpha=\frac{4}{3}$. The ball moves freely under gravity and hits the ground at the point B, as shown in Figure 4.
(a) Find the greatest height of P above the level of A.

The horizontal distance from A to B is 168 m .
(b) Find the height of A above the ground.

By considering energy, or otherwise,
(c) find the speed of P as it hits the ground at B.
(a) $\mathbf{v}_{P}=\{(29 \mathbf{i}+34 \mathrm{j})-(20 \mathrm{i}+10 \mathrm{j})\} / 3=(3 \mathrm{i}+8 \mathrm{j}) \mathrm{km} \mathrm{h}^{-1}$
(b) $\mathrm{p}=(20 \mathrm{i}+10 \mathbf{j})+(3 \mathbf{i}+8 \mathbf{j}) t$

$$
q=(14 i-6 j)+12 t j
$$

(c) $\quad \mathrm{q}-\mathrm{p}=(-6-3 t) \mathbf{i}+(-16+4 \mathrm{t}) \mathbf{j}$

$$
\begin{align*}
d^{2} & =(-6-3 t)^{2}+(-16+4 t)^{2} \\
& =36+36 t+9 t^{2}+16 t^{2}-128 t+256 \\
& =25 t^{2}-92 t+292 \tag{}
\end{align*}
$$

(d) $\quad 25 t^{2}-92 t+292=225$

$$
25 t^{2}-92 t+67=0
$$

$$
(t-1)(25 t-67)=0
$$

$$
t=67 / 25 \text { or } 2.68
$$

time $\approx 161 \mathrm{mins}$, or 2 hrs 41 mins , or 2.41 am , or 0241

M1 A1
(2)

M1 A1 $\sqrt{ }$

M1 A1
(4)

M1 A1
\downarrow
M1
\downarrow
M1

> A1 (cso)
(5)

M1
A1
\downarrow
M1
A1
A1
(5)

		(5)
(a)	$\begin{gathered} 0=(35 \sin \alpha)^{2}-2 g h \\ h=40 \mathrm{~m} \end{gathered}$	$\begin{aligned} & \text { M1 A1 } \\ & \text { A1 (3) } \end{aligned}$
(b)	$x=168 \quad \Rightarrow \quad 168=35 \cos \square \cdot t \quad(\Rightarrow t=8 s)$	M1 A1
(c)	$\text { At } t=8, \quad y=35 \sin \alpha \times t-\frac{1}{2} g t^{2} \quad\left(=28.8-1 / 2 . g .8^{2}=-89.6 \mathrm{~m}\right)$	M1 A1
	Hence height of $A=\underline{89.6 \mathrm{~m}}$ or 90 m	DM1 A1 (6)
	$\begin{align*} 1 / 2 m v^{2}= & 1 / 2 \cdot m \cdot 35^{2}+m g \cdot 89.6 \\ & \Rightarrow v=\underline{54.6} \text { or } 55 \mathrm{~m} \mathrm{~s}^{-1} \tag{3} \end{align*}$	$\begin{aligned} & \text { M1 A1 } \\ & \text { A1 } \end{aligned}$

