1. A particle P moves on the x-axis. The acceleration of P at time t seconds, $t \geq 0$, is $(3 t+5) \mathrm{m} \mathrm{s}^{-2}$ in the positive x-direction. When $t=0$, the velocity of P is $2 \mathrm{~m} \mathrm{~s}^{-1}$ in the positive x-direction. When $t=T$, the velocity of P is $6 \mathrm{~m} \mathrm{~s}^{-1}$ in the positive x-direction.

Find the value of T.
2. A particle P of mass 0.6 kg is released from rest and slides down a line of greatest slope of a rough plane. The plane is inclined at 30° to the horizontal. When P has moved 12 m , its speed is $4 \mathrm{~m} \mathrm{~s}^{-1}$. Given that friction is the only non-gravitational resistive force acting on P, find the coefficient of friction between the particle and the plane.
3.

Figure 2
Figure 2 shows a uniform rod $A B$ of mass m and length $4 a$. The end A of the rod is freely hinged to a point on a vertical wall. A particle of mass m is attached to the rod at B. One end of a light inextensible string is attached to the rod at C, where $A C=3 a$. The other end of the string is attached to the wall at D, where $A D=2 a$ and D is vertically above A. The rod rests horizontally in equilibrium in a vertical plane perpendicular to the wall and the tension in the string is T.
(a) Show that $T=m g \sqrt{ } 13$.

The particle of mass m at B is removed from the rod and replaced by a particle of mass M which is attached to the rod at B. The string breaks if the tension exceeds $2 \mathrm{mg} \sqrt{ } 13$. Given that the string does not break,
(b) show that $M \leq \frac{5}{2} m$.
4.

Figure 3
A ball is projected with speed $40 \mathrm{~m} \mathrm{~s}^{-1}$ from a point P on a cliff above horizontal ground. The point O on the ground is vertically below P and $O P$ is 36 m . The ball is projected at an angle θ° to the horizontal. The point Q is the highest point of the path of the ball and is 12 m above the level of P. The ball moves freely under gravity and hits the ground at the point R, as shown in Figure 3. Find
(a) the value of θ,
(b) the distance $O R$,
(c) the speed of the ball as it hits the ground at R.

Answers

1) $\frac{2}{3}$
2) 0.50
3) a) 22.5°
b) $\mathbf{1 7 3} \mathrm{m}$
c) $\mathbf{4 8} \mathrm{ms}^{-1}$
