Question 13 (***)

The curve C has equation

$$2\cos 3x\sin y = 1$$
, $0 \le x, y \le \pi$.

a) Show that

$$\frac{dy}{dx} = 3\tan 3x \tan y.$$

The point $P\left(\frac{\pi}{12}, \frac{\pi}{4}\right)$ lies on C.

b) Show that an equation of the tangent to C at P is

$$y = 3x$$
.

A curve C is given by the parametric equations

$$x = \frac{3t-2}{t-1}$$
, $y = \frac{t^2-2t+2}{t-1}$, $t \in \mathbb{R}$, $t \neq 1$.

a) Show clearly that

$$\frac{dy}{dx} = 2t - t^2.$$

The point $P(1, -\frac{5}{2})$ lies on C.

b) Show that the equation of the tangent to C at the point P is

$$3x-4y-13=0$$
.

Question 5 (**+)

$$f(x) = \frac{5x+3}{(1-x)(1+3x)}, |x| < \frac{1}{3}.$$

- a) Express f(x) into partial fractions.
- b) Hence find the series expansion of f(x), up and including the term in x^3 .

Question 9 (***)

An oil spillage on the surface of the sea remains circular at all times.

The radius of the spillage, r km, is increasing at the constant rate of 0.5 km h^{-1} .

a) Find the rate at which the area of the spillage, A km², is increasing, when the circle's radius has reached 10 km.

A different oil spillage on the surface of the sea also remains circular at all times.

The area of this spillage, $A \text{ km}^2$, is increasing at the rate of $0.5 \text{ km}^2 \text{ h}^{-1}$.

b) Show that when the area of the spillage has reached 10 km^2 , the rate at which the radius r of the spillage is increasing is

$$\frac{1}{4\sqrt{10\pi}} \,\mathrm{km} \,\mathrm{h}^{-1}.$$

$$10\pi \approx 31.4 \text{ km}^2 \text{ h}^{-1}$$

Carry out the following integrations:

1.
$$\int \frac{1}{2} x e^{4x} dx = \frac{1}{8} x e^{4x} - \frac{1}{32} e^{4x} + C$$

2.
$$\int 5x \sin 4x \ dx = -\frac{5}{4}x \cos 4x + \frac{5}{16} \sin 4x + C$$

3.
$$\int (2x+1)\cos 2x \ dx = \frac{1}{2}(2x+1)\sin 2x + \frac{1}{2}\cos 2x + C$$

Question 6

$$f(x) \equiv 9\sin x + 12\cos x, x \in \mathbb{R}$$

- a) Express f(x) in the form $R\sin(x+\alpha)$, R>0, $0<\alpha<\frac{\pi}{2}$.
- b) Hence, solve the trigonometric equation

$$9\sin x + 12\cos x = 7.5$$
, $0 < x < 2\pi$.

$$f(x) \equiv 9\sin x + 12\cos x \cong 15\sin(x + 0.927^{c})$$
, $x \approx 1.69^{c}$, 5.88^{c}

Question 39 (****)

The equation of a curve is given implicitly by

$$4y + y^2 e^{3x} = x^3 + C,$$

where C is a non zero constant.

a) Find a simplified expression for $\frac{dy}{dx}$.

The point P(1,k), where k > 0, is a stationary point of the curve.

b) Find an exact value for C.

$$\boxed{ }$$
, $\frac{dy}{dx} = \frac{3(x^2 - y^2 e^{3x})}{2(2 + y e^{3x})}$, $\boxed{C = 4e^{-\frac{3}{2}}}$