First Year Doubles Assignment test 17 version 0

1) Solve the following equation, in the intervals given in brackets.
$6 \sin x+8 \cos x=5 \sqrt{3},\left[0,360^{\circ}\right]$
2) Find $\int \frac{25 x+1}{(2 x-1)(x+1)^{2}} d x$
3) a) Write down two conditions under which the Normal distribution may be used as an approximation to the binomial distribution.
A company sells orchids of which 45% produce pink flowers. A random sample of 20 orchids is taken and X produce pink flowers.
b) Find the probability that 10 pink flowers are produced.

A second random sample of 240 orchids is taken.
c) Using a suitable approximation, find the probability that fewer than 110 orchids produce pink flowers.
d) The probability that at least q orchids produce pink flowers is 0.2 . Find q
4. Two helicopters P and Q are moving in the same horizontal plane.

They are modelled as particles moving in straight lines with constant speeds.
At noon P is at the point with position vector $(20 \mathbf{i}+35 \mathbf{j}) \mathrm{km}$ with respect to a fixed origin 0 .
At time t hours after noon the position vector of P is $\mathbf{p} \mathrm{km}$.
When $t=\frac{1}{2}$ the position vector of P is $(50 \mathbf{i}-25 \mathbf{j}) \mathrm{km}$. Find
a) the velocity of P in the form ($a \mathbf{i}+b j$) $\mathrm{km} \mathrm{h}^{-1}$,
b) an expression for \mathbf{p} in terms of t.

At noon Q is at O and at time t hours after noon the position vector of Q is $\mathbf{q} \mathrm{km}$.
The velocity of Q has magnitude $120 \mathrm{~km} \mathrm{~h}^{-1}$ in the direction of $4 \mathbf{i}-3 \mathbf{j}$. Find
c) an expression for \mathbf{q} in terms of t,
d) the distance, to the nearest km , between P and Q when $\mathrm{t}=2$.
5) a) Find the first four terms, in ascending powers of x, of the binomial expansion of $\left(1+\frac{x}{2}\right)^{7}$ giving each coefficient in exact simplified form.
b) Hence determine the coefficient of x in the expansion of $\left(1+\frac{2}{x}\right)^{2}\left(1+\frac{x}{2}\right)^{7}$

First Year Doubles Assignment test 17 version \mathbf{P}

1) Solve the following equation, in the intervals given in brackets.
$2 \cos 3 \theta-3 \sin 3 \theta=-1,\left[0,90^{\circ}\right]$
2) Find $\int \frac{5 x-1}{(2 x-1)(x+1)^{2}} d x$
3) a) Write down two conditions under which the Normal distribution may be used as an approximation to the binomial distribution.
A company sells orchids of which 44% produce pink flowers. A random sample of 25 orchids is taken and X produce pink flowers.
b) Find the probability that 10 pink flowers are produced.

A second random sample of 240 orchids is taken.
c) Using a suitable approximation, find the probability that fewer than 110 orchids produce pink flowers.
d) The probability that at least q orchids produce pink flowers is 0.2 . Find q
4. Two helicopters P and Q are moving in the same horizontal plane.

They are modelled as particles moving in straight lines with constant speeds.
At noon P is at the point with position vector $(30 \mathbf{i}+45 \mathbf{j}) \mathrm{km}$ with respect to a fixed origin O .
At time t hours after noon the position vector of P is $\mathbf{p} \mathrm{km}$.
When $t=\frac{1}{2}$ the position vector of P is $(60 \mathbf{i}-35 \mathbf{j}) \mathrm{km}$. Find
a) the velocity of P in the form ($a \mathbf{i}+b j$) $\mathrm{km} \mathrm{h}^{-1}$,
b) an expression for \mathbf{p} in terms of t.

At noon Q is at O and at time t hours after noon the position vector of Q is $\mathbf{q} \mathbf{k m}$.
The velocity of Q has magnitude $240 \mathrm{~km} \mathrm{~h}^{-1}$ in the direction of $4 \mathbf{i}-3 \mathbf{j}$. Find
c) an expression for \mathbf{q} in terms of t,
d) the distance, to the nearest km , between P and Q when $\mathrm{t}=2$.
5) a) Find the first four terms, in ascending powers of x, of the binomial expansion of $\left(1+\frac{x}{2}\right)^{8}$ giving each coefficient in exact simplified form.
b) Hence determine the coefficient of x in the expansion of $\left(1+\frac{2}{x}\right)^{2}\left(1+\frac{x}{2}\right)^{8}$

First Year Doubles Assignment test 17 version Q

1) Solve the following equation, in the intervals given in brackets.
$8 \cos \theta+15 \sin \theta=10,\left[0,360^{\circ}\right]$
2) Find $\int \frac{5 x+1}{(2 x-1)(x+1)^{2}} d x$
3) a) Write down two conditions under which the Normal distribution may be used as an approximation to the binomial distribution.
A company sells orchids of which 43% produce pink flowers. A random sample of 30 orchids is taken and X produce pink flowers.
b) Find the probability that 10 pink flowers are produced.

A second random sample of 240 orchids is taken.
c) Using a suitable approximation, find the probability that fewer than 110 orchids produce pink flowers.
d) The probability that at least q orchids produce pink flowers is 0.2 . Find q
4. Two helicopters P and Q are moving in the same horizontal plane.

They are modelled as particles moving in straight lines with constant speeds.
At noon P is at the point with position vector $(40 \mathbf{i}+55 \mathbf{j}) \mathrm{km}$ with respect to a fixed origin O.
At time t hours after noon the position vector of P is $\mathbf{p} \mathrm{km}$.
When $t=\frac{1}{2}$ the position vector of P is $(70 \mathbf{i}-45 \mathbf{j}) \mathrm{km}$. Find
a) the velocity of P in the form ($a \mathbf{i}+b j$) $\mathrm{km} \mathrm{h}^{-1}$,
b) an expression for \mathbf{p} in terms of t .

At noon Q is at O and at time t hours after noon the position vector of Q is $q \mathbf{k m}$.
The velocity of Q has magnitude $360 \mathrm{~km} \mathrm{~h}^{-1}$ in the direction of $4 \mathbf{i}-3 \mathbf{j}$. Find
c) an expression for \mathbf{q} in terms of t,
d) the distance, to the nearest km , between P and Q when $\mathrm{t}=2$.
5) a) Find the first four terms, in ascending powers of x, of the binomial expansion of $\left(1+\frac{x}{2}\right)^{9}$ giving each coefficient in exact simplified form.
b) Hence determine the coefficient of x in the expansion of $\left(1+\frac{2}{x}\right)^{2}\left(1+\frac{x}{2}\right)^{9}$

First Year Doubles Assignment test 17 version \mathbf{R}

1) Solve the following equation, in the intervals given in brackets.
$5 \sin \frac{x}{2}-12 \cos \frac{x}{2}=6.5,\left[-360^{\circ}, 360^{\circ}\right]$
2) Find $\int \frac{2 x-1}{(2 x+1)(x+1)^{2}} d x$
3) a) Write down two conditions under which the Normal distribution may be used as an approximation to the binomial distribution.
A company sells orchids of which 35% produce pink flowers. A random sample of 19 orchids is taken and X produce pink flowers.
b) Find the probability that 10 pink flowers are produced.

A second random sample of 240 orchids is taken.
c) Using a suitable approximation, find the probability that fewer than 100 orchids produce pink flowers.
d) The probability that at least q orchids produce pink flowers is 0.2 . Find q
4. Two helicopters P and Q are moving in the same horizontal plane. They are modelled as particles moving in straight lines with constant speeds.
At noon P is at the point with position vector $\left(x_{0} \mathbf{i}+y_{0} \mathbf{j}\right) \mathrm{km}$ with respect to a fixed origin 0 .
At time t hours after noon the position vector of P is p km .
When $\mathrm{t}=\frac{1}{2}$ the position vector of P is $\left(x_{1} \mathbf{i}+y_{1} \mathbf{j}\right) \mathrm{km}$. Find
a) the velocity of P in the form (ai $+\mathbf{b j}$) $\mathrm{km} \mathrm{h}^{-1}$,
b) an expression for \boldsymbol{p} in terms of t.

At noon Q is at O and at time t hours after noon the position vector of Q is $\mathbf{q k m}$.
The velocity of Q has magnitude $60 \mathrm{~km} \mathrm{~h}^{-1}$ in the direction of $4 \mathbf{i}-3 \mathbf{j}$. Find
c) an expression for \mathbf{q} in terms of t,
d) an expression for the distance between P and Q when $\mathrm{t}=2$.
5) a) Find the first four terms, in ascending powers of x, of the binomial expansion of $\left(1+\frac{x}{2}\right)^{10}$ giving each coefficient in exact simplified form.
b) Hence determine the coefficient of x in the expansion of $\left(1+\frac{2}{x}\right)^{2}\left(1+\frac{x}{2}\right)^{10}$

Answers Version 0

1) $6.9^{\circ}, 66.9^{\circ}$
2) $3 \ln (|2 x-1|)-3 \ln (|x+1|)-\frac{8}{x+1}+C$
3) a) n is large and p is close to 0.5
b) 0.1593
c) 0.577
d) 115
4 a) $60 i-120 j$
b) $(20+60 \mathrm{t}) \mathbf{i}+(35-120 \mathrm{t}) \mathbf{j}$
c) $96 \mathrm{ti}-72 \mathrm{tj}$
d) 80 km
5 a) $1+\frac{7}{2} x+\frac{21}{4} x^{2}+\frac{35}{8} x^{3}$
b) 42

Answers Version P

1) $16.6^{\circ}, 65.9^{\circ}$
2) $\frac{\ln (|2 x-1|)}{3}-\frac{\ln (|x+1|)}{3}-\frac{2}{x+1}+C$
3) a) n is large and p is close to 0.5
b) 0.1485
c) 0.694
d) 113
4 a) $60 \mathbf{i}-160 j$
b) $(30+60 \mathrm{t}) \mathbf{i}+(45-160 \mathrm{t}) \mathbf{j}$
c) $192 \mathrm{ti}-144 \mathrm{tj}$
d) 234 km
5 a) $1+4 x+7 x^{2}+7 x^{3}$
b) 60

Answers Version Q

1) $8.0^{\circ}, 115.9^{\circ}$
2) $\frac{7 \ln (|2 x-1|)}{9}-\frac{7 \ln (|x+1|)}{9}-\frac{4}{3 x+3}+c$
3) a) n is large and p is close to 0.5
b) 0.0851
c) 0.794
d) 110

4 a) $60 i-200 j$
b) $(40+60 t) \mathbf{i}+(55-200 t) \mathbf{j}$
c) $288 \mathrm{ti}-216 \mathrm{tj}$
d) 425 km

5 a) $1+\frac{9}{2} x+9 x^{2}+\frac{21}{2} x^{3}$
b) $\frac{165}{2}$

Answers Version R

1) $-285.2^{\circ}, 194.8^{\circ}$
2) $-4 \ln (|2 x+1|)+4 \ln (|x+1|)-\frac{3}{x+1}+C$
3) a) n is large and p is close to 0.5
b) 0.0528
c) 0.982
d) 91
4 a) $2\left(x_{1}-x_{0}\right) \mathbf{i}+2\left(y_{1}-y_{0}\right) \mathbf{j}$
b) $\left(x_{0}+2 t\left(x_{1}-x_{0}\right)\right) \boldsymbol{i}+\left(y_{0}+2 t\left(y_{1}-y_{0}\right)\right) \boldsymbol{j}$
c) $48 \mathrm{ti}-36 \mathrm{tj}$
d) $\sqrt{\left(96-4 x_{1}+3 x_{0}\right)^{2}+\left(-72-4 y_{1}+3 y_{0}\right)^{2}}$
5 a) $1+5 x+\frac{45}{4} x^{2}+15 x^{3}$
b) 110
