$$f(x) = |3x+2|, x \in \mathbb{R}$$
.

- a) Sketch the graph of f(x), clearly indicating the coordinates of any points where the graph of f(x) meets the coordinate axes.
- b) Solve the equation

$$f(x)=1$$
.

$$(0,2),(-\frac{2}{3},0), x=-\frac{1}{3},-1$$

The functions f and g are defined as

$$f(x) = |2x-4|, x \in \mathbb{R}$$

$$g(x) = |x|, x \in \mathbb{R}$$
.

- a) Sketch in the same diagram the graph of f and the graph of g. Mark clearly in the sketch the coordinates of any x or y intercepts.
- b) Solve the equation

$$f(x) = g(x)$$
.

c) Hence, or otherwise, solve the inequality

$$f(x) < g(x)$$
.

$$(0,0),(2,0),(0,4)$$
, $x = \frac{4}{3},4$, $\frac{4}{3} < x < 4$

Question 11 (***)

Solve the modulus inequality

$$|12-2|2x-3| \ge 7$$
.

Question 12 (***)

Solve the modulus equation

$$4x + |3x + 2| = 1$$
.

Question 13 (***)

Find the solutions of the equation

$$2x^2 - 5 = 13$$
.

 $x = \pm 3$

The curve C_1 and the curve C_2 have respective equations

$$y = |x|$$
 and $y = |x-2| + 1$.

- a) Sketch the graph of C₂, indicating the coordinates of any intercepts with the coordinate axes.
- b) Determine the coordinates of the point of intersection between the graph of C_1 and the graph of C_2 .

 $\left(\frac{3}{2},\frac{3}{2}\right)$

Question 53 (****)

The straight line L with equation

$$y = x + 3, x \in \mathbb{R}$$

intersects the curve C with equation

$$y = x^2 - 9$$
, $x \in \mathbb{R}$,

at three distinct points.

- a) Sketch on the same set of axes the graph of L and the graph of C. The sketch must include the coordinates of any x or y intercepts.
- b) Find the coordinates of the points of intersections between L and C.

$$(-3,0), (3,0), (0,3), (0,9), (-3,0), (2,5), (4,7)$$