$$f(x) = |3x+2|, x \in \mathbb{R}$$. - a) Sketch the graph of f(x), clearly indicating the coordinates of any points where the graph of f(x) meets the coordinate axes. - b) Solve the equation $$f(x)=1$$. $$(0,2),(-\frac{2}{3},0), x=-\frac{1}{3},-1$$ The functions f and g are defined as $$f(x) = |2x-4|, x \in \mathbb{R}$$ $$g(x) = |x|, x \in \mathbb{R}$$. - a) Sketch in the same diagram the graph of f and the graph of g. Mark clearly in the sketch the coordinates of any x or y intercepts. - b) Solve the equation $$f(x) = g(x)$$. c) Hence, or otherwise, solve the inequality $$f(x) < g(x)$$. $$(0,0),(2,0),(0,4)$$, $x = \frac{4}{3},4$, $\frac{4}{3} < x < 4$ ## Question 11 (***) Solve the modulus inequality $$|12-2|2x-3| \ge 7$$. ## Question 12 (***) Solve the modulus equation $$4x + |3x + 2| = 1$$. ## Question 13 (***) Find the solutions of the equation $$2x^2 - 5 = 13$$. $x = \pm 3$ The curve C_1 and the curve C_2 have respective equations $$y = |x|$$ and $y = |x-2| + 1$. - a) Sketch the graph of C₂, indicating the coordinates of any intercepts with the coordinate axes. - b) Determine the coordinates of the point of intersection between the graph of C_1 and the graph of C_2 . $\left(\frac{3}{2},\frac{3}{2}\right)$ ## Question 53 (****) The straight line L with equation $$y = x + 3, x \in \mathbb{R}$$ intersects the curve C with equation $$y = x^2 - 9$$, $x \in \mathbb{R}$, at three distinct points. - a) Sketch on the same set of axes the graph of L and the graph of C. The sketch must include the coordinates of any x or y intercepts. - b) Find the coordinates of the points of intersections between L and C. $$(-3,0), (3,0), (0,3), (0,9), (-3,0), (2,5), (4,7)$$