- a) Sketch the graph of f(x), clearly indicating the coordinates of any points where the graph of f(x) meets the coordinate axes.
- b) Solve the equation

$$f(x)=1$$
.

2 The functions f and g are defined as

$$f(x) = |2x-4|, x \in \mathbb{R}$$

$$g(x) = |x|, x \in \mathbb{R}$$
.

- a) Sketch in the same diagram the graph of f and the graph of g.

 Mark clearly in the sketch the coordinates of any x or y intercepts.
- b) Solve the equation

$$f(x) = g(x)$$
.

c) Hence, or otherwise, solve the inequality

$$f(x) < g(x)$$
.

3 Solve the modulus inequality

4

$$|12-2|2x-3| \ge 7$$
.

Solve the modulus equation

$$4x + |3x + 2| = 1$$
.

Find the solutions of the equation

5

$$2x^2-5=13$$
.

The curve C₁ and the curve C₂ have respective equations

$$y = |x|$$
 and $y = |x-2| + 1$.

- a) Sketch the graph of C₂, indicating the coordinates of any intercepts with the coordinate axes.
- b) Determine the coordinates of the point of intersection between the graph of C₁ and the graph of C₂.

7 The straight line L with equation

$$y = x + 3, x \in \mathbb{R}$$

intersects the curve C with equation

$$y = |x^2 - 9|, x \in \mathbb{R},$$

at three distinct points.

- a) Sketch on the same set of axes the graph of L and the graph of C. The sketch must include the coordinates of any x or y intercepts.
- b) Find the coordinates of the points of intersections between L and C.