Modulus Graphs

b Sketch the graph of y = |f(x)|.

b Sketch the graph of y = |g(x)|.

b Sketch the graph of y = |h(x)|.

1
$$f(x) = x^2 - 7x - 8$$

- a Sketch the graph of y = f(x).
- **c** Sketch the graph of y = f(|x|).
- 2 g: $x \mapsto \cos x$, $-360^{\circ} \le x \le 360^{\circ}$
 - a Sketch the graph of y = g(x).
 - **c** Sketch the graph of y = g(|x|).
- 3 h: $x \mapsto (x-1)(x-2)(x+3)$
 - a Sketch the graph of y = h(x).
 - c Sketch the graph of y = h(|x|).
- 4 The function f is defined as

f:
$$x \mapsto 4|x + 6| + 1, x \in \mathbb{R}$$
.

- a Sketch the graph of y = f(x).
- b State the range of the function.
- c Solve the equation $f(x) = -\frac{1}{2}x + 1$.
- 5 Given that $g(x) = -\frac{5}{2}|x 2| + 7, x \in \mathbb{R}$,
 - a sketch the graph of y = g(x)
 - b state the range of the function
 - **c** solve the equation g(x) = x + 1.
- 6 The function h is defined by

$$h(x) = \frac{2}{3}|x - 1| - 7, x \in \mathbb{R}$$

The diagram shows a sketch of the graph v = h(x).

a State the range of h.

- (1 mark)
- **b** Give a reason why h⁻¹ does not exist.
- (1 mark)
- c Solve the inequality h(x) < -6.
- (4 marks)
- \mathbf{d} State the range of values of k for which the
- equation $h(x) = \frac{2}{3}x + k$ has no solutions. (4 marks)
- 7 The diagram shows a sketch of part of the graph y = h(x), where h(x) = a 2|x + 3|, $x \in \mathbb{R}$.

The graph intercepts the y-axis at (0, 4).

a Find the value of a.

- (2 marks)
- **b** Find the coordinates of *P* and *Q*.
- (3 marks)

c Solve $h(x) = \frac{1}{3}x + 6$.

(5 marks)

- The diagram shows a sketch of part of the graph y = m(x), where m(x) = -4|x + 3| + 7, $x \in \mathbb{R}$.
 - a State the range of m.

(1 mark)

- **b** Solve the equation $m(x) = \frac{3}{5}x + 2$.
- (4 marks)

Given that m(x) = k, where k is a constant, has two distinct roots

 \mathbf{c} state the set of possible values for k.

(4 marks)

