

A uniform rod $A B$ has length 5 m and weight 100 N .
The rod rests in a horizontal position on two smooth supports at P and Q, where $A P=1 \mathrm{~m}$, as shown in the figure above.

The magnitude of the reaction force on the rod at P is 40 N .
a) Determine magnitude of the reaction force on the rod at Q.
b) Calculate the distance $A Q$.

3

A plank of wood $A B$ has length 4 m and mass 40 kg . The plank is smoothly supported at A and at C, where $A C=3 \mathrm{~m}$, as shown in the figure above.

A man of mass 80 kg stands on the plank at a distance $d \mathrm{~m}$ from A.
The plank with the man standing on it remains in equilibrium with $A B$ horizontal, and the reactions on the rod at A and at C equal.

The plank is modelled as a uniform rod and the man as a particle.
Determine the value of d.

5

A box of mass 76 kg is attached by a string to one end B of a uniform rod $A B$ of length 5 m and mass 24 kg .

The rod is held horizontally in equilibrium by two smooth cylindrical pegs, one at A and one at C, where $|A C|=2 \mathrm{~m}$, as shown in the figure above.

Calculate the magnitude of the forces exerted by each of the pegs onto the rod.

A non uniform plank of wood $A B$ has length 8 m and mass 100 kg .

The plank is smoothly supported at its two ends A and B. A boy of mass 60 kg stands on the plank at the point C, where $A C=3 \mathrm{~m}$, as shown in the figure above.

The plank with the boy standing on the plank, remains in equilibrium with $A B$ horizontal. The plank is modelled as a non uniform rod and the boy as a particle.
a) Given that the reactions at the two supports are equal, determine the distance of the centre of mass of the plank from A.
b) Explain in the context of this problem the model of
i. ... the plank is a rod
ii. ... the boy is a particle.

4

A uniform iron girder $A B$ has length 8 m and weight $W \mathrm{~N}$. A load of 250 N is attached to the girder at A and a load of 400 N is attached to the girder at B.

The loaded girder is suspended by two light vertical cables attached to the girder at points C and D, where $A C=1 \mathrm{~m}$ and $D B=3 \mathrm{~m}$. When the loaded girder rests undisturbed in a horizontal position, the tension in the cable at D is four times the tension at the cable at C.

The girder is modelled as a uniform rod and the two loads as particles.
a) Determine magnitude of the tension on the girder at C.
b) Find the value of W.

A uniform rod $A B$ has length 5 m and weight 300 N . The rod rests in a horizontal position on two smooth supports at C and D, where $A C=1 \mathrm{~m}$ and $D B=2 \mathrm{~m}$, as shown in the figure above. A particle of weight $W \mathrm{~N}$ is placed on the rod at the point E, where $A E=x \mathrm{~m}$.

The magnitude of the reaction on the rod at C is twice the magnitude of the reaction on the rod at D.
a) Show clearly that

$$
W=\frac{\mathrm{A}}{5-3 x} .
$$

State A
b) Determine the range of possible values of x.

Give your answer in the form $0<x<k$ stating k

The figure above shows a uniform wooden beam $A B$, of length $x \mathrm{~m}$ and weight 80 N . The beam is smoothly hinged at A and rests in a horizontal position on a smooth support at C, where $A C=3 \mathrm{~m}$.

When a rock of weight 70 N is placed on the beam at B the magnitude of the reaction force on the beam at C is 165 N .

The beam is modelled as a uniform rod and the rock as a particle.
a) Calculate the value of x.
b) Explain briefly the model ...
i. ... the beam is a uniform rod.
ii. ... the rock is a particle.

The rock is next moved to a new position D on the beam, so that the beam with the rock at D remains in equilibrium in a horizontal position. The magnitude of reaction force at the support at C is now twenty times as large as the reaction force at the hinge at A.
c) Calculate the distance $A D$.

A non uniform plank of wood $A B$ has length 8.5 m and mass 20 kg . The centre of mass of the plank is 3.75 m from B. The plank is smoothly supported at C and D, where $A C=0.5 \mathrm{~m}$ and $D B=2 \mathrm{~m}$, as shown in the figure above.

A boy of mass 40 kg stands on the plank at the point M, where M is the midpoint of $C D$. The plank with the boy standing on the plank, remains in equilibrium with $A B$ horizontal.

The plank is modelled as a non uniform rod and the boy as a particle.
a) Calculate the magnitude of each of the reaction forces acting on the rod at C and D.

The boy next moves and stands at the point E on the plank, so that the plank is at the point of tilting about D.
b) Determine the distance $D E$.

12

A non uniform rod $A B$ has length 7 m and weight 300 N . The centre of mass of the rod is $x \mathrm{~m}$ from A.

The rod is placed on two smooth supports at C and D, where $A C=2.5 \mathrm{~m}$ and $D B=2 \mathrm{~m}$. The supports at C and D are at the same horizontal level, as shown in the figure above.

When a particle of weight $W \mathrm{~N}$ is placed on the rod at A the reaction force on the rod at C is 200 N . The rod and the particle rest in equilibrium, with $A B$ in a horizontal position.
a) Show clearly that

$$
\mathrm{H}=60 x-W
$$

Give the value of H
The particle is then removed from A and placed on the rod at B. The rod and the particle remain in equilibrium, with $A B$ in a horizontal position and the reaction force on the rod at C is now 80 N .
b) Calculate the value of W and the value of x.

8

A mechanical lever consists of a uniform steel rigid rod $A B$, of length 2 m and weight 100 N , placed over a smooth pivot at C.

A box of weight 2400 N is suspended by a light inextensible string at B. When a vertical force is applied at A, as shown in the figure above, the lever remains in equilibrium, with $A B$ horizontal.
a) Given that $C B=0.3 \mathrm{~m}$, determine the magnitude of the force applied at A.

The position of the pivot is changed so that lever remains in equilibrium when the vertical force applied at A has magnitude 200 N .
b) Calculate the new distance of the pivot from B.

9

The figure above shows a uniform rod $A B$ of length 1.8 m and mass 3 kg , held in a horizontal position by two small smooth pegs C and D.

A particle of mass 12 kg , is placed at B.
Given that $|A C|=0.3 \mathrm{~m}$ and $|C D|=0.4 \mathrm{~m}$, determine the magnitude of each of the forces exerted on the rod by the pegs.

11

The figure above shoes a uniform rod $A B$ of length 4 m and mass 100 kg . The rod rests in equilibrium in a horizontal position, on two supports at C and D, where $A C=0.5 \mathrm{~m}$ and $D B=x \mathrm{~m}$.
a) Given that the reaction force at the support at D is three times as large as the reaction force at the support at C, determine the value of x.

The support at D is next moved to a new position E, where $E B=0.75 \mathrm{~m}$ and an additional mass of $m \mathrm{~kg}$ is placed at B. The rod remains in equilibrium in a horizontal position and the reaction force at the support at E is now twice as large as the reaction force at the support at C.

