Connected Rates of Change

1) The radius, $r \mathrm{~cm}$, of a circle is increasing at the rate of $3 \mathrm{~ms}^{-1}$. Find the rate at which the area is increasing when its radius is 13.5 cm .
2) The side of a cube of length $x \mathrm{~cm}$ is increasing at the constant rate of $1.5 \mathrm{~cm} \mathrm{~s}^{-1}$. Find the rate at which the volume is increasing when its side is 6 cm .
3) The surface area, $S \mathrm{~cm}^{2}$ of a sphere is increasing at the constant rate of $512 \mathrm{~cm}^{2} \mathrm{~s}^{-1}$. The surface area of a sphere is given by $S=4 \pi r^{2}$. Find the rate at which the radius, $r \mathrm{~cm}$, is increasing when it 's the sphere's radius has reached 8 cm .
4) $x=4 \sin \theta+7 \cos \theta$. The value of θ is increasing at the constant rate of 0.5 units s^{-1}. Find the rate at which x is changing when $\theta=\frac{\pi}{2}$.
5) Fine sand is dropping on a horizontal floor at the constant rate of $4 \mathrm{~cm}^{3} s^{-1}$ and forms a pile whose volume, $V \mathrm{~cm}^{3}$, and height $h \mathrm{~cm}$ are connected by the formula $V=-8+\sqrt{h^{4}+64}$. Find the rate at which the height of the pile is increasing when the height of the pile has reached 2 cm .
6) Two variables, x and y are related by $y=\frac{1}{4} \pi x^{2}(4-x)$. The variable y is changing with time t, at a constant rate of 0.2 units s^{-1}. Find the rate at which x is changing with respect to t when $x=2$.
7) Liquid is pouring into a container at the constant rate of $30 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$. The container is initially empty and when the height of the liquid in the container is $h \mathrm{~cm}$, the colume of the liquid $V \mathrm{~cm}^{3}$ is given by $V=36 h^{2}$.
a) Find the rate at which the height of the liquid in the container is rising when the height of the liquid reaches 3 cm .
b) Determine the rate at which the height of the liquid in the container is rising 12.5 minutes after the liquid started pouring in.
8) The radius of a circle $R \mathrm{~cm}$ at time t seconds is given by $R=10\left(1-e^{-k t}\right)$ where k is a positive constant and $t>0$. Show that if A is the area of the circle in $c m^{2}$, then $\frac{d A}{d t}=P k\left(e^{-k t}-e^{-2 k t}\right)$, stating the exact value of P .

$$
\begin{array}{ll}
C=7 \pi & A=\frac{1}{5 \pi} \\
B=18 \pi & C=7 / 2 \\
J=81 \pi & V=\sqrt{7} \\
L=127 & J=\sqrt{5} \\
M=219 & N=400 \pi \\
I=162 & A=\frac{1}{4 \pi} \\
P=2.55 & K=20 \pi \\
T=126 & P=\frac{7}{36}, \frac{1}{60} \\
A=200 \pi & T=\frac{5}{36}, \frac{1}{30} \\
I=-7 / 2 & Y=\sqrt{11} \\
P=\frac{5}{36}, \frac{1}{60} &
\end{array}
$$

