Connected Rates of Change

- 1) The radius, r cm, of a circle is increasing at the rate of 3 ms^{-1} . Find the rate at which the area is increasing when its radius is 13.5 cm.
- 2) The side of a cube of length $x\ cm$ is increasing at the constant rate of $1.5\ cm\ s^{-1}$. Find the rate at which the volume is increasing when its side is $6\ cm$.
- 3) The surface area, $S\ cm^2$ of a sphere is increasing at the constant rate of $512\ cm^2\ s^{-1}$. The surface area of a sphere is given by $S=4\pi r^2$. Find the rate at which the radius, $r\ cm$, is increasing when it's the sphere's radius has reached $8\ cm$.
- 4) $x=4\sin\theta+7\cos\theta$. The value of θ is increasing at the constant rate of $0.5~units~s^{-1}$. Find the rate at which x is changing when $\theta=\frac{\pi}{2}$.
- 5) Fine sand is dropping on a horizontal floor at the constant rate of $4~cm^3s^{-1}$ and forms a pile whose volume, $V~cm^3$, and height h~cm are connected by the formula $V=-8+\sqrt{h^4+64}$. Find the rate at which the height of the pile is increasing when the height of the pile has reached 2~cm.
- 6) Two variables, x and y are related by $y = \frac{1}{4}\pi x^2(4-x)$. The variable y is changing with time t, at a constant rate of $0.2\ units\ s^{-1}$. Find the rate at which x is changing with respect to t when x=2.
- 7) Liquid is pouring into a container at the constant rate of $30 \ cm^3 s^{-1}$. The container is initially empty and when the height of the liquid in the container is $h \ cm$, the colume of the liquid $V \ cm^3$ is given by $V = 36h^2$.
- a) Find the rate at which the height of the liquid in the container is rising when the height of the liquid reaches 3 cm.
- b) Determine the rate at which the height of the liquid in the container is rising 12.5 minutes after the liquid started pouring in.
- 8) The radius of a circle R cm at time t seconds is given by $R=10(1-e^{-kt})$ where k is a positive constant and t>0. Show that if A is the area of the circle in cm^2 , then $\frac{dA}{dt}=Pk\big(e^{-kt}-e^{-2kt}\big)$, stating the exact value of P.

The correct letters spell, in order, a south American city