First Year Doubles Assignment Test 16 Version 0

1(a)Sketch the two inequalities $y<(2-x)(3+x)$ and $y-x \geq 2$
(b)Shade the region that satisfies both inequalities.
2. Given that $e^{2 x}+e^{2 y}=x y$, find $\frac{d y}{d x}$ in terms of x and y.
3. Corinne and her brother Dermot are lifted by their parents onto the two ends of a rope which is slung over a large horizontal branch. When their parents let go of them Dermot, whose mass is 54 kg , begins to descend with an acceleration of $1 \mathrm{~ms}^{-2}$. By modelling the children as a pair of particles connected by a light inextensible string, and the branch as a smooth pulley,
a) Find Corinne's mass
b) Calculate the tension in the rope
c) Find the force on the branch
d) In a more sophisticated model, the branch is assumed to be rough. Explain what effect this would have on the initial acceleration of the children.
4. If $X \sim N\left(\mu, \sigma^{2}\right)$, find μ and σ when $P(X>7)=0.8$ and $P(X<6)=0.1$
5. Find an expression for $\int x(6 x-5 \sqrt{x}) d x$

First Year Doubles Assignment Test 16 Version \mathbf{P}

1(a)Sketch the two inequalities $y<(2+x)(3-x)$ and $y+x \geq 2$.
(b)Shade the region that satisfies both inequalities.
2. Given that $e^{3 x}+e^{2 y}=2 x y$, find $\frac{d y}{d x}$ in terms of x and y.
3. Corinne and her brother Dermot are lifted by their parents onto the two ends of a rope which is slung over a large horizontal branch. When their parents let go of them Dermot, whose mass is 50 kg , begins to descend with an acceleration of $2 \mathrm{~ms}^{-2}$. By modelling the children as a pair of particles connected by a light inextensible string, and the branch as a smooth pulley,
a) Find Corinne's mass
b) Calculate the tension in the rope
c) Find the force on the branch
d) In a more sophisticated model, the branch is assumed to be rough. Explain what effect this would have on the initial acceleration of the children.
4. If $X \sim N\left(\mu, \sigma^{2}\right)$, find μ and σ when $P(X>150)=0.3$ and $P(X<120)=0.4$
5. Find an expression for $\int x(7 x-6 \sqrt{x}) d x$

First Year Doubles Assignment Test 16 Version Q

1(a)Sketch the two inequalities $y<(2-x)(3-x)-10$ and $y-x \geq-7$.
(b)Shade the region that satisfies both inequalities.
2. Given that $e-2 x+e-3 y=a x y$, find $\frac{d y}{d x}$ in terms of x and y.
3. Corinne and her brother Dermot are lifted by their parents onto the two ends of a rope which is slung over a large horizontal branch. When their parents let go of them Dermot, whose mass is 46 kg , begins to descend with an acceleration of $3 \mathrm{~ms}-2$. By modelling the children as a pair of particles connected by a light inextensible string, and the branch as a smooth pulley,
a) Find Corinne's mass
b) Calculate the tension in the rope
c) Find the force on the branch
d) In a more sophisticated model, the branch is assumed to be rough. Explain what effect this would have on the initial acceleration of the children.
4. If $X \sim N\left(\mu, \sigma^{2}\right)$, find μ and σ when $P(X>0.1)=0.4$ and $P(X \geq 0.6)=0.25$
5. Find an expression for $\int x(8 x-7 \sqrt{x}) d x$

First Year Doubles Assignment Test 16 Version R

1(a)Sketch the two inequalities $y<(2-x)(3-x)-2$ and $2 y-x \geq-2$.
(b)Shade the region that satisfies both inequalities.
2. Given that $e^{\mathrm{px}}+e^{\mathrm{q} y}=\mathrm{axy}$, find $\frac{d y}{d x}$ in terms of x and y.
3. Corinne and her brother Dermot are lifted by their parents onto the two ends of a rope which is slung over a large horizontal branch. When their parents let go of them Dermot, whose mass is 42 kg , begins to descend with an acceleration of $4 \mathrm{~ms}^{-2}$. By modelling the children as a pair of particles connected by a light inextensible string, and the branch as a smooth pulley,
a) Find Corinne's mass
b) Calculate the tension in the rope
c) Find the force on the branch
d) In a more sophisticated model, the branch is assumed to be rough. Explain what effect this would have on the initial acceleration of the children.
4. If $X \sim N\left(\mu, \sigma^{2}\right)$, find μ and σ when $P(X>700)=0.8$ and $P(X \geq 400)=0.99$
5. Find an expression for $\int x(9 x-8 \sqrt{x}) d x$

Answers Version 0

1.

* \uparrow *

2. $\frac{d y}{d x}=\frac{y-2 e^{2 x}}{2 e^{2 y}-x}$
3. a) 44
b) 475 N
c) 950 N
d) Friction opposes motion, therefore acceleration is smaller
4. $\mu=8.91, \sigma=2.27$
5. $2 x^{3}-2 x^{\frac{5}{2}}+c$

Answers Version P

1.

2. $\frac{d y}{d x}=\frac{2 y-3 e^{3 x}}{2 e^{2 y}-2 x}$
3. a) 33 kg
b) 390 N
c) 780 N
d) Friction opposes motion, therefore acceleration is smaller
4. $\mu=130, \sigma=38.6$
5. $\frac{7}{3} x^{3}-\frac{12}{5} x^{\frac{5}{2}}+c$

Answers Version Q

1.

2. $\frac{d y}{d x}=\frac{-2-\mathrm{ay}}{\mathrm{ax}+3}$
3. a) 24.4
b) 313 N
c) 689 N
d) Friction opposes motion, therefore acceleration is smaller
4. $\mu=-0.201, \sigma=1.19$
5. $\frac{8}{3} x^{3}-\frac{14}{5} x^{\frac{5}{2}}+c$

Answers Version \mathbf{R}

1.

2. $\frac{d y}{d x}=\frac{a y-\mathrm{p} e^{p x}}{\mathrm{q} e^{\mathrm{q} y}-\mathrm{a} x}$
3. a) 17.7
b) 244 N
c) 487 N
d) Friction opposes motion, therefore acceleration is smaller
4. $\mu=870, \sigma=202$
5. $3 x^{3}-\frac{16}{5} x^{\frac{5}{2}}+c$

