First Year Doubles Assignment Test 16 Version O

- 1(a)Sketch the two inequalities y < (2 x)(3 + x) and $y x \ge 2$ (b)Shade the region that satisfies both inequalities.
- 2. Given that $e^{2x} + e^{2y} = xy$, find $\frac{dy}{dx}$ in terms of x and y.
- 3. Corinne and her brother Dermot are lifted by their parents onto the two ends of a rope which is slung over a large horizontal branch. When their parents let go of them Dermot, whose mass is 54 kg, begins to descend with an acceleration of 1 ms⁻². By modelling the children as a pair of particles connected by a light inextensible string, and the branch as a smooth pulley,
- a) Find Corinne's mass
- b) Calculate the tension in the rope
- c) Find the force on the branch
- d) In a more sophisticated model, the branch is assumed to be rough. Explain what effect this would have on the initial acceleration of the children.
- 4. If $X \sim N(\mu, \sigma^2)$, find μ and σ when P(X > 7) = 0.8 and P(X < 6) = 0.1
- 5. Find an expression for $\int x(6x-5\sqrt{x})dx$

First Year Doubles Assignment Test 16 Version P

- 1(a)Sketch the two inequalities y < (2 + x)(3 x) and $y + x \ge 2$. (b)Shade the region that satisfies both inequalities.
- 2. Given that $e^{3x} + e^{2y} = 2xy$, find $\frac{dy}{dx}$ in terms of x and y.
- 3. Corinne and her brother Dermot are lifted by their parents onto the two ends of a rope which is slung over a large horizontal branch. When their parents let go of them Dermot, whose mass is 50 kg, begins to descend with an acceleration of 2 ms⁻². By modelling the children as a pair of particles connected by a light inextensible string, and the branch as a smooth pulley,
- a) Find Corinne's mass
- b) Calculate the tension in the rope
- c) Find the force on the branch
- d) In a more sophisticated model, the branch is assumed to be rough. Explain what effect this would have on the initial acceleration of the children.
- 4. If $X \sim N(\mu, \sigma^2)$, find μ and σ when P(X > 150) = 0.3 and P(X < 120) = 0.4
- 5. Find an expression for $\int x(7x-6\sqrt{x})dx$

First Year Doubles Assignment Test 16 Version Q

- 1(a)Sketch the two inequalities y < (2 x)(3 x) 10 and $y x \ge -7$. (b)Shade the region that satisfies both inequalities.
- 2. Given that e-2x + e-3y = axy, find $\frac{dy}{dx}$ in terms of x and y.
- 3. Corinne and her brother Dermot are lifted by their parents onto the two ends of a rope which is slung over a large horizontal branch. When their parents let go of them Dermot, whose mass is 46 kg, begins to descend with an acceleration of 3 ms–2. By modelling the children as a pair of particles connected by a light inextensible string, and the branch as a smooth pulley,
- a) Find Corinne's mass
- b) Calculate the tension in the rope
- c) Find the force on the branch
- d) In a more sophisticated model, the branch is assumed to be rough. Explain what effect this would have on the initial acceleration of the children.
- 4. If $X \sim N(\mu, \sigma^2)$, find μ and σ when P(X > 0.1) = 0.4 and $P(X \ge 0.6) = 0.25$
- 5. Find an expression for $\int x(8x-7\sqrt{x})dx$

First Year Doubles Assignment Test 16 Version R

- 1(a)Sketch the two inequalities y < (2-x)(3-x)-2 and $2y-x \ge -2$. (b)Shade the region that satisfies both inequalities.
- 2. Given that $e^{px} + e^{qy} = axy$, find $\frac{dy}{dx}$ in terms of x and y.
- 3. Corinne and her brother Dermot are lifted by their parents onto the two ends of a rope which is slung over a large horizontal branch. When their parents let go of them Dermot, whose mass is 42 kg, begins to descend with an acceleration of 4 ms⁻². By modelling the children as a pair of particles connected by a light inextensible string, and the branch as a smooth pulley,
- a) Find Corinne's mass
- b) Calculate the tension in the rope
- c) Find the force on the branch
- d) In a more sophisticated model, the branch is assumed to be rough. Explain what effect this would have on the initial acceleration of the children.
- 4. If $X \sim N(\mu, \sigma^2)$, find μ and σ when P(X > 700) = 0.8 and $P(X \ge 400) = 0.99$
- 5. Find an expression for $\int x(9x-8\sqrt{x})dx$

Answers Version O

1.

$$2. \frac{dy}{dx} = \frac{y - 2e^{2x}}{2e^{2y} - x}$$

- 3. a) 44
- b) 475 N
- c) 950 N
- d) Friction opposes motion, therefore acceleration is smaller

$$4. \mu = 8.91, \ \sigma = 2.27$$

$$5.\ 2x^3 - 2x^{\frac{5}{2}} + c$$

Answers Version P

1.

$$2. \ \frac{dy}{dx} = \frac{2y - 3e^{3x}}{2e^{2y} - 2x}$$

- 3. a) 33 kg
- b) 390 N
- c) 780 N
- d) Friction opposes motion, therefore acceleration is smaller

$$4. \mu = 130, \ \sigma = 38.6$$

$$5.\frac{7}{3}x^3 - \frac{12}{5}x^{\frac{5}{2}} + c$$

Answers Version Q

1.

$$2. \frac{dy}{dx} = \frac{-2 - ay}{ax + 3}$$

3. a) 24.4

b) 313 N

c) 689 N

d) Friction opposes motion, therefore acceleration is smaller

$$4. \mu = -0.201, \sigma = 1.19$$

4.
$$\mu = -0.201$$
, $\sigma = 1.19$
5. $\frac{8}{3}x^3 - \frac{14}{5}x^{\frac{5}{2}} + c$

Answers Version R

1.

$$2.\frac{dy}{dx} = \frac{ay - pe^{px}}{qe^{qy} - ax}$$

3. a) 17.7

b) 244 N

c) 487 N

d) Friction opposes motion, therefore acceleration is smaller

$$4. \mu = 870. \sigma = 202$$

4.
$$\mu = 870$$
, $\sigma = 202$
5. $3x^3 - \frac{16}{5}x^{\frac{5}{2}} + c$