Inequalities

5 The solution of an inequality is the set of all real numbers x that make the inequality true.
6 To solve a quadratic inequality:

- Rearrange so that the right-hand side of the inequality is 0
- Solve the corresponding quadratic equation to find the critical values
- Sketch the graph of the quadratic function
- Use your sketch to find the required set of values.

7 The values of x for which the curve $y=\mathrm{f}(x)$ is below the curve $y=\mathrm{g}(x)$ satisfy the inequality $\mathrm{f}(x)<\mathrm{g}(x)$.
The values of x for which the curve $y=\mathrm{f}(x)$ is above the curve $y=\mathrm{g}(x)$ satisfy the inequality $\mathrm{f}(x)>\mathrm{g}(x)$.
$8 y<\mathrm{f}(x)$ represents the points on the coordinate grid below the curve $y=\mathrm{f}(x)$.
$y>\mathrm{f}(x)$ represents the points on the coordinate grid above the curve $y=\mathrm{f}(x)$.
9 If $y>\mathrm{f}(x)$ or $y<\mathrm{f}(x)$ then the curve $y=\mathrm{f}(x)$ is not included in the region and is represented by a dotted line.
If $y \geqslant \mathrm{f}(x)$ or $y \leqslant \mathrm{f}(x)$ then the curve $y=\mathrm{f}(x)$ is included in the region and is represented by a solid line.

Questions

(E)

9 Give your answers in set notation.
a Solve the inequality $3 x-8>x+13$.
b Solve the inequality $x^{2}-5 x-14>0$.
(E) 10 Find the set of values of x for which $(x-1)(x-4)<2(x-4)$.
(E) 11 a Use algebra to solve $(x-1)(x+2)=18$.
b Hence, or otherwise, find the set of values of x for which $(x-1)(x+2)>18$. Give your answer in set notation.

12 Find the set of values of x for which:
a $6 x-7<2 x+3$
b $2 x^{2}-11 x+5<0$
c $5<\frac{20}{x}$
d both $6 x-7<2 x+3$ and $2 x^{2}-11 x+5<0$.
(E) 13 Find the set of values of x that satisfy $\frac{8}{x^{2}}+1 \leqslant \frac{9}{x}, x \neq 0$
(E) 14 Find the values of k for which $k x^{2}+8 x+5=0$ has real roots.
(E/P) 15 The equation $2 x^{2}+4 k x-5 k=0$, where k is a constant, has no real roots. Prove that k satisfies the inequality $-\frac{5}{2}<k<0$.
(E) 16 a Sketch the graphs of $y=\mathrm{f}(x)=x^{2}+2 x-15$ and $\mathrm{g}(x)=6-2 x$ on the same axes.
b Find the coordinates of any points of intersection.
c Write down the set of values of x for which $\mathrm{f}(x)>\mathrm{g}(x)$.
(E) 17 Find the set of values of x for which the curve with equation $y=2 x^{2}+3 x-15$ is below the line with equation $y=8+2 x$.
(E) $\mathbf{1 8}$ On a coordinate grid, shade the region that satisfies the inequalities:

$$
y>x^{2}+4 x-12 \text { and } y<4-x^{2} .
$$

(E/P) 19 a On a coordinate grid, shade the region that satisfies the inequalities

$$
y+x<6, y<2 x+9, y>3 \text { and } x>0 .
$$

b Work out the area of the shaded region.

Solutions

Pure Mathematics Year 1/AS

SolutionBank

9 a $\begin{aligned} 3 x-x & >13+8 \\ 2 x & >21 \\ x & >10 \frac{1}{2}\end{aligned}$
In set notation, the solution is $\left\{x: x>\frac{21}{2}\right\}$
b $x^{2}-5 x-14=0$ $(x+2)(x-7)=0$ $x=-2$ or $x=7$

$x^{2}-5 x-14>0$ when $x<-2$
or $x>7$
In set notation, the solution is

$$
\{x: x<-2\} \cup\{x: x>7\}
$$

10 Multiplying out the brackets:

$$
\begin{gathered}
x^{2}-5 x+4<2 x-8 \\
x^{2}-5 x-2 x+4+8<0 \\
x^{2}-7 x+12<0 \\
x^{2}-7 x+12=0 \\
(x-3)(x-4)=0
\end{gathered}
$$

$$
x=3 \text { or } x=4
$$

11 a $x^{2}+x-2=18$

$$
x^{2}+x-20=0
$$

$(x+5)(x-4)=0$
$x=-5$ or $x=4$
b $(x-1)(x+2)>18$
$\Rightarrow x^{2}+x-20>0$

$x^{2}+x-20>0$ when $x<-5$ or $x>4$
In set notation, the solution is $\{x: x<-5\} \cup\{x: x>4\}$

12a $\quad 6 x-2 x<3+7$
$4 x<10$

$$
x<\frac{5}{2}
$$

b $(2 x-1)(x-5)=0$
$x=\frac{1}{2}$ or $x=5$

$2 x^{2}-11 x+5<0$ when $\frac{1}{2}<x<5$

$$
x^{2}-7 x+12<0 \text { when } 3<x<4
$$

12c $5<\frac{20}{x}$
Multiply both sides by x^{2}
$5 x^{2}<20 x$
$5 x^{2}-20 x<0$
Solve the quadratic to find the critical values:
$5 x^{2}-20 x=0$
$5 x(x-4)=0$
$x=0$ or $x=4$

The solution is $0<x<4$
d

Intersection is $\frac{1}{2}<x<\frac{5}{2}$
$13 \quad \frac{8}{x^{2}}+1 \leq \frac{9}{x}$
Multiply both sides by x^{2} :
$8+x^{2} \leq 9 x$
$x^{2}-9 x+8 \leq 0$
Solve the quadratic to find the critical values:
$x^{2}-9 x+8=0$
$(x-1)(x-8)=0$
$x=1$ or $x=8$

13

The solution is $1 \leq x \leq 8$
$14 a=k, b=8, c=5$
Using the discriminant $b^{2}-4 a c \geq 0$:

$$
8^{2}-4 k \times 5 \geq 0
$$

$$
\begin{aligned}
64-20 k & \geq 0 \\
64 & \geq 20 k
\end{aligned}
$$

$$
\frac{64}{20} \geq k
$$

$$
k \leq \frac{16}{5}
$$

$15 a=2, b=4 k, c=-5 k$
Using the discriminant $b^{2}-4 a c<0$:

$$
\begin{aligned}
&(4 k)^{2}-4(2)(-5 k)<0 \\
& 16 k^{2}+40 k<0 \\
& 8 k(2 k+5)<0
\end{aligned}
$$

$$
k=0 \text { or } k=-\frac{5}{2}
$$

$$
\text { 16a } \begin{aligned}
& y=x^{2}+2 x-15 \\
& y=(x+5)(x-3) \\
& 0=(x+5)(x-3) \\
& x=-5 \text { or } x=3 \\
& \text { When } x=0, y=-15
\end{aligned}
$$

b $x^{2}+2 x-15=6-2 x$
$x^{2}+4 x-21=0$
$(x+7)(x-3)=0$ $x=-7$ or $x=3$
When $x=-7, y=20$
When $x=3, y=0$
The points of intersection are $(-7,20)$ and (3,0).
c

From the graph and the calculated points of intersection, the required values are
$x<-7$ or $x>3$.
17

$$
\begin{aligned}
& 2 x^{2}+3 x-15=8+2 x \\
& 2 x^{2}+x-23=0 \\
& x=\frac{-1 \pm \sqrt{185}}{4}=\frac{1}{4}(-1 \pm \sqrt{185}) \\
& \frac{1}{4}(-1-\sqrt{185})<x<\frac{1}{4}(-1+\sqrt{185})
\end{aligned}
$$

$18 y=x^{2}+4 x-12$
$x^{2}+4 x-12=0$
$(x+6)(x-2)=0$
$x=-6$ or $x=2$
$y=4-x^{2}$
$4-x^{2}=0$
$(2+x)(2-x)=0$
$x=-2$ or $x=2$

b Area $=\frac{1}{2} \times 3 \times 3=4 \frac{1}{2}$ units 2

